Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Patient mutations linked to arrhythmogenic cardiomyopathy enhance calpain-mediated desmoplakin degradation
Ronald Ng, Heather Manring, Nikolaos Papoutsidakis, Taylor Albertelli, Nicole Tsai, Claudia J. See, Xia Li, Jinkyu Park, Tyler L. Stevens, Prameela J. Bobbili, Muhammad Riaz, Yongming Ren, Christopher E. Stoddard, Paul M.L. Janssen, T. Jared Bunch, Stephen P. Hall, Ying-Chun Lo, Daniel L. Jacoby, Yibing Qyang, Nathan Wright, Maegen A. Ackermann, Stuart G. Campbell
Ronald Ng, Heather Manring, Nikolaos Papoutsidakis, Taylor Albertelli, Nicole Tsai, Claudia J. See, Xia Li, Jinkyu Park, Tyler L. Stevens, Prameela J. Bobbili, Muhammad Riaz, Yongming Ren, Christopher E. Stoddard, Paul M.L. Janssen, T. Jared Bunch, Stephen P. Hall, Ying-Chun Lo, Daniel L. Jacoby, Yibing Qyang, Nathan Wright, Maegen A. Ackermann, Stuart G. Campbell
View: Text | PDF
Research Article Cardiology Genetics

Patient mutations linked to arrhythmogenic cardiomyopathy enhance calpain-mediated desmoplakin degradation

  • Text
  • PDF
Abstract

Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder with variable genetic etiologies. Here, we focused on understanding the precise molecular pathology of a single clinical variant in DSP, the gene encoding desmoplakin. We initially identified a potentially novel missense desmoplakin variant (p.R451G) in a patient diagnosed with biventricular ACM. An extensive single-family ACM cohort was assembled, revealing a pattern of coinheritance for R451G desmoplakin and the ACM phenotype. An in vitro model system using patient-derived induced pluripotent stem cell lines showed depressed levels of desmoplakin in the absence of abnormal electrical propagation. Molecular dynamics simulations of desmoplakin R451G revealed no overt structural changes, but a significant loss of intramolecular interactions surrounding a putative calpain target site was observed. Protein degradation assays of recombinant desmoplakin R451G confirmed increased calpain vulnerability. In silico screening identified a subset of 3 additional ACM-linked desmoplakin missense mutations with apparent enhanced calpain susceptibility, predictions that were confirmed experimentally. Similar to R451G, these mutations are found in families with biventricular ACM. We conclude that augmented calpain-mediated degradation of desmoplakin represents a shared pathological mechanism for select ACM-linked missense variants. This approach for identifying variants with shared molecular pathologies may represent a powerful new strategy for understanding and treating inherited cardiomyopathies.

Authors

Ronald Ng, Heather Manring, Nikolaos Papoutsidakis, Taylor Albertelli, Nicole Tsai, Claudia J. See, Xia Li, Jinkyu Park, Tyler L. Stevens, Prameela J. Bobbili, Muhammad Riaz, Yongming Ren, Christopher E. Stoddard, Paul M.L. Janssen, T. Jared Bunch, Stephen P. Hall, Ying-Chun Lo, Daniel L. Jacoby, Yibing Qyang, Nathan Wright, Maegen A. Ackermann, Stuart G. Campbell

×

Figure 4

EHTs homozygous for R451G maintain normal levels of DSP mRNA.

Options: View larger image (or click on image) Download as PowerPoint
EHTs homozygous for R451G maintain normal levels of DSP mRNA.
(A) Genoty...
(A) Genotyping of the control cell line (WT/WT) and the same cell line after CRISPR/Cas9 manipulation to introduce the DSP R451G mutation (ENST00000379802.8; c.1596CGT>GGT; Chr. 6:7568521, GRCh38.p12) at both alleles (R451G/R451G). (B) RT-qPCR was performed on engineered heart tissues formed from WT/WT and R451G/R451G cardiomyocytes in order to probe for DSP mRNA abundance. Several different primer pairs covering different exon junctions indicate that similar levels of DSP mRNA were expressed in both cell lines and that the introduction of c.1596CGT>GGT did not affect mRNA stability or result in alternative splicing (2-tailed unpaired t test with Bonferroni correction; n = 3). Blue and orange arrows represent regions targeted by forward and reverse primer pairs. Cycle thresholds were normalized to TNNT2 (cardiac troponin T).

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts