Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Nrf2 activation protects against lithium-induced nephrogenic diabetes insipidus
Soma Jobbagy, Dario A. Vitturi, Sonia R. Salvatore, Maria F. Pires, Pascal Rowart, David R. Emlet, Mark Ross, Scott Hahn, Claudette St. Croix, Stacy G. Wendell, Arohan R. Subramanya, Adam C. Straub, Roderick J. Tan, Francisco J. Schopfer
Soma Jobbagy, Dario A. Vitturi, Sonia R. Salvatore, Maria F. Pires, Pascal Rowart, David R. Emlet, Mark Ross, Scott Hahn, Claudette St. Croix, Stacy G. Wendell, Arohan R. Subramanya, Adam C. Straub, Roderick J. Tan, Francisco J. Schopfer
View: Text | PDF
Research Article Nephrology Therapeutics

Nrf2 activation protects against lithium-induced nephrogenic diabetes insipidus

  • Text
  • PDF
Abstract

Lithium (Li) is the mainstay pharmacotherapeutic mood stabilizer in bipolar disorder. Its efficacious use is complicated by acute and chronic renal side effects, including nephrogenic diabetes insipidus (NDI) and progression to chronic kidney disease (CKD). The nuclear factor erythroid-derived 2–related factor 2 (Nrf2) pathway senses and coordinates cellular responses to oxidative and electrophilic stress. Here, we identify that graded genetic activation of Nrf2 protects against Li-induced NDI (Li-NDI) and volume wasting via an aquaporin 2–independent mechanism. Renal Nrf2 activity is differentially expressed on functional segments of the nephron, and its activation along the distal tubule and collecting duct directly modulates ion transporter expression, mimicking paradoxical effects of diuretics in mitigating Li-NDI. In addition, Nrf2 reduces cyclooxygenase expression and vasoactive prostaglandin biosynthesis. Pharmacologic activation of Nrf2 confers protective effects, confirming this pathway as a potentially novel druggable target for the prevention of acute and chronic renal sequelae of Li therapy.

Authors

Soma Jobbagy, Dario A. Vitturi, Sonia R. Salvatore, Maria F. Pires, Pascal Rowart, David R. Emlet, Mark Ross, Scott Hahn, Claudette St. Croix, Stacy G. Wendell, Arohan R. Subramanya, Adam C. Straub, Roderick J. Tan, Francisco J. Schopfer

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 592 92
PDF 120 22
Figure 385 0
Supplemental data 60 2
Citation downloads 94 0
Totals 1,251 116
Total Views 1,367

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts