Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
TAFI deficiency causes maladaptive vascular remodeling after hemophilic joint bleeding
Tine Wyseure, Tingyi Yang, Jenny Y. Zhou, Esther J. Cooke, Bettina Wanko, Merissa Olmer, Ruchi Agashe, Yosuke Morodomi, Niels Behrendt, Martin Lotz, John Morser, Annette von Drygalski, Laurent O. Mosnier
Tine Wyseure, Tingyi Yang, Jenny Y. Zhou, Esther J. Cooke, Bettina Wanko, Merissa Olmer, Ruchi Agashe, Yosuke Morodomi, Niels Behrendt, Martin Lotz, John Morser, Annette von Drygalski, Laurent O. Mosnier
View: Text | PDF
Research Article Angiogenesis Hematology

TAFI deficiency causes maladaptive vascular remodeling after hemophilic joint bleeding

  • Text
  • PDF
Abstract

Excessive vascular remodeling is characteristic of hemophilic arthropathy (HA) and may contribute to joint bleeding and the progression of HA. Mechanisms for pathological vascular remodeling after hemophilic joint bleeding are unknown. In hemophilia, activation of thrombin-activatable fibrinolysis inhibitor (TAFI) is impaired, which contributes to joint bleeding and may also underlie the aberrant vascular remodeling. Here, hemophilia A (factor VIII–deficient; FVIII-deficient) mice or TAFI-deficient mice with transient (antibody-induced) hemophilia A were used to determine the role of FVIII and TAFI in vascular remodeling after joint bleeding. Excessive vascular remodeling and vessel enlargement persisted in FVIII-deficient and TAFI-deficient mice, but not in transient hemophilia WT mice, after similar joint bleeding. TAFI-overexpression in FVIII-deficient mice prevented abnormal vessel enlargement and vascular leakage. Age-related vascular changes were observed with FVIII or TAFI deficiency and correlated positively with bleeding severity after injury, supporting increased vascularity as a major contributor to joint bleeding. Antibody-mediated inhibition of uPA also prevented abnormal vascular remodeling, suggesting that TAFI’s protective effects include inhibition of uPA-mediated plasminogen activation. In conclusion, the functional TAFI deficiency in hemophilia drives maladaptive vascular remodeling in the joints after bleeding. These mechanistic insights allow targeted development of potentially new strategies to normalize vascularity and control rebleeding in HA.

Authors

Tine Wyseure, Tingyi Yang, Jenny Y. Zhou, Esther J. Cooke, Bettina Wanko, Merissa Olmer, Ruchi Agashe, Yosuke Morodomi, Niels Behrendt, Martin Lotz, John Morser, Annette von Drygalski, Laurent O. Mosnier

×

Figure 4

Joint vascularity is increased in aged TAFI-KO mice.

Options: View larger image (or click on image) Download as PowerPoint
Joint vascularity is increased in aged TAFI-KO mice.
Analysis of joint v...
Analysis of joint vascularity at baseline (no injury) based on histology of Safranin O fast Green–stained sections of BALB/c WT, BALB/c FVIII-KO, C57Bl/6J WT, and C57Bl/6J TAFI-KO mice at 18–22 months of age. Mice with a PD signal between the mean ± SD (Figure 3) were selected for histological examination. Each point represents an individual mouse (n = 8–12). (A) Total vessel count, (B) average vessel diameter, (C) vessel count with diameter ≥ 40 μm, and (E) quantification of perivascular αSMA signal (pixel2; n = 9–11) of BALB/c FVIII-KO mice and C57Bl/6J TAFI-KO at 18–22 months compared with their respective age-matched WT controls. (D) Representative images of αSMA staining. Original magnification 40×. Scale bar: 100 μm. Data are represented as mean ± SD and were analyzed using Student’s 2-tailed, unpaired t test (A–C and E). *P < 0.05; **P < 0.01.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts