An imbalance of nephroprotective factors and renal damaging molecules contributes to development and progression of chronic kidney disease (CKD). We investigated associations of renoprotective factor gene expression patterns with CKD severity and outcome. Gene expression profiles of 197 previously reported renoprotective factors were analyzed in a discovery cohort in renal biopsies of 63 CKD patients. Downregulation of dicarbonyl and L-xylulose reductase (DCXR) showed the strongest association with disease progression. This significant association was validated in an independent set of 225 patients with nephrotic syndrome from the multicenter NEPTUNE cohort. Reduced expression of DCXR was significantly associated with degree of histological damage as well as with lower estimated glomerular filtration rate and increased urinary protein levels. DCXR downregulation in CKD was confirmed in 3 publicly available transcriptomics data sets in the context of CKD. Expression of DCXR showed positive correlations to enzymes that are involved in dicarbonyl stress detoxification based on transcriptomics profiles. The sodium glucose cotransporter-2 (SGLT2) inhibitors canagliflozin and empagliflozin showed a beneficial effect on renal proximal tubular cells under diabetic stimuli–enhanced DCXR gene expression. In summary, lower expression of the renoprotective factor DCXR in renal tissue is associated with more severe disease and worse outcome in human CKD.
Paul Perco, Wenjun Ju, Julia Kerschbaum, Johannes Leierer, Rajasree Menon, Catherine Zhu, Matthias Kretzler, Gert Mayer, Michael Rudnicki, Nephrotic Syndrome Study Network (NEPTUNE)
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 296 | 160 |
103 | 46 | |
Figure | 204 | 8 |
Table | 38 | 0 |
Supplemental data | 39 | 8 |
Citation downloads | 54 | 0 |
Totals | 734 | 222 |
Total Views | 956 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.