Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Arginine metabolic control of airway inflammation
Kewal Asosingh, … , Weiling Xu, Serpil Erzurum
Kewal Asosingh, … , Weiling Xu, Serpil Erzurum
Published January 30, 2020
Citation Information: JCI Insight. 2020;5(2):e127801. https://doi.org/10.1172/jci.insight.127801.
View: Text | PDF
Research Article Inflammation Metabolism

Arginine metabolic control of airway inflammation

  • Text
  • PDF
Abstract

Inducible nitric oxide synthase (iNOS) and arginase-2 (ARG2) share a common substrate, arginine. Higher expression of iNOS and exhaled NO are linked to airway inflammation in patients. iNOS deletion in animal models suggests that eosinophilic inflammation is regulated by arginine metabolism. Moreover, ARG2 is a regulator of Th2 response, as shown by the development of severe eosinophilic inflammation in ARG2–/– mice. However, potential synergistic roles of iNOS and ARG2 in asthma have not been explored. Here, we hypothesized that arginine metabolic fate via iNOS and ARG2 may govern airway inflammation. In an asthma cohort, ARG2 variant genotypes were associated with arginase activity. ARG2 variants with lower arginase activity, combined with levels of exhaled NO, identified a severe asthma phenotype. Airway inflammation was present in WT, ARG2–/–, iNOS–/–, and ARG2–/–/iNOS–/– mice but was greatest in ARG2–/–. Eosinophilic and neutrophilic infiltration in the ARG2–/– mice was abrogated in ARG2–/–/iNOS–/– animals. Similarly, angiogenic airway remodeling was greatest in ARG2–/– mice. Cytokines driving inflammation and remodeling were highest in lungs of asthmatic ARG2–/– mice and lowest in the iNOS–/–. ARG2 metabolism of arginine suppresses inflammation, while iNOS metabolism promotes airway inflammation, supporting a central role for arginine metabolic control of inflammation.

Authors

Kewal Asosingh, Chris D. Lauruschkat, Mario Alemagno, Matthew Frimel, Nicholas Wanner, Kelly Weiss, Sean Kessler, Deborah A. Meyers, Carole Bennett, Weiling Xu, Serpil Erzurum

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts