Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Polycomb repressive complex 2 is a critical mediator of allergic inflammation
Christine R. Keenan, Nadia Iannarella, Alexandra L. Garnham, Alexandra C. Brown, Richard Y. Kim, Jay C. Horvat, Philip M. Hansbro, Stephen L. Nutt, Rhys S. Allan
Christine R. Keenan, Nadia Iannarella, Alexandra L. Garnham, Alexandra C. Brown, Richard Y. Kim, Jay C. Horvat, Philip M. Hansbro, Stephen L. Nutt, Rhys S. Allan
View: Text | PDF
Research Article Immunology Inflammation

Polycomb repressive complex 2 is a critical mediator of allergic inflammation

  • Text
  • PDF
Abstract

Strategies that intervene with the development of immune-mediated diseases are urgently needed, as current treatments mostly focus on alleviating symptoms rather than reversing the disease. Targeting enzymes involved in epigenetic modifications to chromatin represents an alternative strategy that has the potential to perturb the function of the lymphocytes that drive the immune response. Here, we report that 2 major epigenetic silencing pathways are increased after T cell activation. By specific inactivation of these molecules in the T cell compartment in vivo, we demonstrate that the polycomb repressive complex 2 (PRC2) is essential for the generation of allergic responses. Furthermore, we show that small-molecule inhibition of the PRC2 methyltransferase, enhancer of zeste homolog 2 (Ezh2), reduces allergic inflammation in mice. Therefore, by systematically surveying the pathways involved in epigenetic gene silencing we have identified Ezh2 as a target for the suppression of allergic disease.

Authors

Christine R. Keenan, Nadia Iannarella, Alexandra L. Garnham, Alexandra C. Brown, Richard Y. Kim, Jay C. Horvat, Philip M. Hansbro, Stephen L. Nutt, Rhys S. Allan

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 440 56
PDF 83 15
Figure 296 16
Supplemental data 47 5
Citation downloads 106 0
Totals 972 92
Total Views 1,064
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts