Despite their well-recognized success in the clinic, antibodies generally do not penetrate cellular membranes to target intracellular molecules, many of which underlie incurable diseases. Here we show that covalently conjugating phosphorothioated DNA oligonucleotides to antibodies enabled their efficient cellular internalization. Antibody cell penetration was partially mediated by membrane potential alteration. Moreover, without an antigen to bind, intracellular levels of the modified antibodies underwent cellular clearance, which involved efflux and lysosomal degradation, enabling detection of intended intracellular molecules as tested in fibroblasts, tumor cells, and T cells. This target-dependent cellular retention of modified antibodies extended to in vivo studies. Both local and systemic administrations of low doses of modified antibodies effectively inhibited intracellular targets, such as transcription factors Myc, interferon regulatory factor 4, and tyrosine-protein kinase SRC, and expression of their downstream genes in tumors, resulting in tumor cell apoptosis and tumor growth inhibition. This simple modification enables the use of antibodies to detect and modulate intracellular molecules in both cultured living cells and in whole animals, forming the foundation for a new paradigm for antibody-based research, diagnostics, and therapeutics.
Andreas Herrmann, Toshikage Nagao, Chunyan Zhang, Christoph Lahtz, Yi-Jia Li, Chanyu Yue, Ronja Mülfarth, Hua Yu
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 684 | 859 |
119 | 149 | |
Figure | 169 | 9 |
Supplemental data | 46 | 24 |
Citation downloads | 37 | 0 |
Totals | 1,055 | 1,041 |
Total Views | 2,096 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.