Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Pyruvate kinase M2 is requisite for Th1 and Th17 differentiation
Michihito Kono, Kayaho Maeda, Irina Stocton-Gavanescu, Wenliang Pan, Masataka Umeda, Eri Katsuyama, Catalina Burbano, Seo Yeon K. Orite, Milena Vukelic, Maria G. Tsokos, Nobuya Yoshida, George C. Tsokos
Michihito Kono, Kayaho Maeda, Irina Stocton-Gavanescu, Wenliang Pan, Masataka Umeda, Eri Katsuyama, Catalina Burbano, Seo Yeon K. Orite, Milena Vukelic, Maria G. Tsokos, Nobuya Yoshida, George C. Tsokos
View: Text | PDF
Research Article Immunology

Pyruvate kinase M2 is requisite for Th1 and Th17 differentiation

  • Text
  • PDF
Abstract

Th1 and Th17 are important in the pathogenesis of autoimmune diseases and they depend on glycolysis as a source of energy. T cell antigen receptor signaling phosphorylates a serine/threonine kinase, calcium/calmodulin–dependent protein kinase IV (CaMK4), and promotes glycolysis. Based on these findings we hypothesized that CaMK4 promotes glycolysis. Camk4-deficient CD4+ T cells and cells treated with a CaMK4 inhibitor had less glycolysis compared with their counterparts. Pull-down of CaMK4 and mass spectrometry identified pyruvate kinase muscle isozyme (PKM), the final rate-limiting enzyme in glycolysis, as a binding partner. Coimmunoprecipitation and Western blotting showed that CaMK4 interacts directly with PKM2. Camk4-deficient CD4+ T cells displayed decreased pyruvate kinase activity. Silencing or pharmacological inhibition of PKM2 reduced glycolysis and in vitro differentiation to Th1 and Th17 cells, while PKM2 overexpression restored Th17 cell differentiation. Treatment with a PKM2 inhibitor ameliorated experimental autoimmune encephalomyelitis and CD4+ T cells treated with PKM2 inhibitor or Pkm2-shRNA caused limited disease activity in an adoptive cell transfer model of experimental autoimmune encephalomyelitis. Our data demonstrate that CaMK4 binds to PKM2 and promotes its activity, which is requisite for Th1 and Th17 differentiation in vitro and in vivo. PKM2 represents a therapeutic target for T cell–dependent autoimmune diseases.

Authors

Michihito Kono, Kayaho Maeda, Irina Stocton-Gavanescu, Wenliang Pan, Masataka Umeda, Eri Katsuyama, Catalina Burbano, Seo Yeon K. Orite, Milena Vukelic, Maria G. Tsokos, Nobuya Yoshida, George C. Tsokos

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 905 236
PDF 126 53
Figure 343 3
Table 43 0
Supplemental data 60 5
Citation downloads 88 0
Totals 1,565 297
Total Views 1,862
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts