Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

NTCP deficiency in mice protects against obesity and hepatosteatosis
Joanne M. Donkers, Sander Kooijman, Davor Slijepcevic, Roni F. Kunst, Reinout L.P. Roscam Abbing, Lizette Haazen, Dirk R. de Waart, Johannes H.M. Levels, Kristina Schoonjans, Patrick C.N. Rensen, Ronald P.J. Oude Elferink, Stan F.J. van de Graaf
Joanne M. Donkers, Sander Kooijman, Davor Slijepcevic, Roni F. Kunst, Reinout L.P. Roscam Abbing, Lizette Haazen, Dirk R. de Waart, Johannes H.M. Levels, Kristina Schoonjans, Patrick C.N. Rensen, Ronald P.J. Oude Elferink, Stan F.J. van de Graaf
View: Text | PDF
Research Article Hepatology Metabolism

NTCP deficiency in mice protects against obesity and hepatosteatosis

  • Text
  • PDF
Abstract

Bile acids play a major role in the regulation of lipid and energy metabolism. Here we propose the hepatic bile acid uptake transporter Na+ taurocholate cotransporting polypeptide (NTCP) as a target to prolong postprandial bile acid elevations in plasma. Reducing hepatic clearance of bile acids from plasma by genetic deletion of NTCP moderately increased plasma bile acid levels, reduced diet-induced obesity, attenuated hepatic steatosis, and lowered plasma cholesterol levels. NTCP and G protein–coupled bile acid receptor–double KO (TGR5–double KO) mice were equally protected against diet-induced obesity as NTCP–single KO mice. NTCP-KO mice displayed decreased intestinal fat absorption and a trend toward higher fecal energy output. Furthermore, NTCP deficiency was associated with an increased uncoupled respiration in brown adipose tissue, leading to increased energy expenditure. We conclude that targeting NTCP-mediated bile acid uptake can be a novel approach to treat obesity and obesity-related hepatosteatosis by simultaneously dampening intestinal fat absorption and increasing energy expenditure.

Authors

Joanne M. Donkers, Sander Kooijman, Davor Slijepcevic, Roni F. Kunst, Reinout L.P. Roscam Abbing, Lizette Haazen, Dirk R. de Waart, Johannes H.M. Levels, Kristina Schoonjans, Patrick C.N. Rensen, Ronald P.J. Oude Elferink, Stan F.J. van de Graaf

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts