Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Circulating cell death biomarker TRAIL is associated with increased organ dysfunction in sepsis
Edward J. Schenck, … , Ilias I. Siempos, Augustine M.K. Choi
Edward J. Schenck, … , Ilias I. Siempos, Augustine M.K. Choi
Published May 2, 2019
Citation Information: JCI Insight. 2019;4(9):e127143. https://doi.org/10.1172/jci.insight.127143.
View: Text | PDF
Clinical Medicine Immunology Inflammation

Circulating cell death biomarker TRAIL is associated with increased organ dysfunction in sepsis

  • Text
  • PDF
Abstract

BACKGROUND. In sepsis, there may be dysregulation in programed cell death pathways, typified by apoptosis and necroptosis. Programmed cell death pathways may contribute to variability in the immune response. TRAIL is a potent inducer of apoptosis. Receptor-interacting serine/threonine protein kinase-3 (RIPK3) is integral to the execution of necroptosis. We explored whether plasma TRAIL levels were associated with in-hospital mortality, organ dysfunction, and septic shock. We also explored the relationship between TRAIL and RIPK3. METHODS. We performed an observational study of critically ill adults admitted to intensive care units at 3 academic medical centers across 2 continents, using 1 as derivation and the other 2 as validation cohorts. Levels of TRAIL were measured in the plasma of 570 subjects by ELISA. RESULTS. In all cohorts, lower (<28.5 pg/ml) versus higher levels of TRAIL were associated with increased organ dysfunction (P ≤ 0.002) and septic shock (P ≤ 0.004). Lower TRAIL levels were associated with in-hospital mortality in 2 of 3 cohorts (Weill Cornell-Biobank of Critical Illness, P = 0.012; Brigham and Women’s Hospital Registry of Critical Illness, P = 0.011; Asan Medical Center, P = 0.369). Lower TRAIL was also associated with increased RIPK3 (P ≤ 0.001). CONCLUSION. Lower levels of TRAIL were associated with septic shock and organ dysfunction in 3 independent ICU cohorts. TRAIL was inversely associated with RIPK3 in all cohorts. FUNDING. NIH (R01-HL055330 and KL2-TR002385).

Authors

Edward J. Schenck, Kevin C. Ma, David R. Price, Thomas Nicholson, Clara Oromendia, Eliza Rose Gentzler, Elizabeth Sanchez, Rebecca M. Baron, Laura E. Fredenburgh, Jin-Won Huh, Ilias I. Siempos, Augustine M.K. Choi

×

Full Text PDF | Download (833.36 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts