Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer
Meifang Yu, Nicholas D. Nguyen, Yanqing Huang, Daniel Lin, Tara N. Fujimoto, Jessica M. Molkentine, Amit Deorukhkar, Ya’an Kang, F. Anthony San Lucas, Conrad J. Fernandes, Eugene J. Koay, Sonal Gupta, Haoqiang Ying, Albert C. Koong, Joseph M. Herman, Jason B. Fleming, Anirban Maitra, Cullen M. Taniguchi
Meifang Yu, Nicholas D. Nguyen, Yanqing Huang, Daniel Lin, Tara N. Fujimoto, Jessica M. Molkentine, Amit Deorukhkar, Ya’an Kang, F. Anthony San Lucas, Conrad J. Fernandes, Eugene J. Koay, Sonal Gupta, Haoqiang Ying, Albert C. Koong, Joseph M. Herman, Jason B. Fleming, Anirban Maitra, Cullen M. Taniguchi
View: Text | PDF
Research Article Gastroenterology Oncology

Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer

  • Text
  • PDF
Abstract

Pancreatic ductal adenocarcinoma (PDAC) requires mitochondrial oxidative phosphorylation (OXPHOS) to fuel its growth; however, broadly inhibiting this pathway might also disrupt essential mitochondrial functions in normal tissues. PDAC cells exhibit abnormally fragmented mitochondria that are essential to the oncogenicity of PDAC, but it was unclear if this mitochondrial feature was a valid therapeutic target. Here, we present evidence that normalizing the fragmented mitochondria of pancreatic cancer via the process of mitochondrial fusion reduces OXPHOS, which correlates with suppressed tumor growth and improved survival in preclinical models. Mitochondrial fusion was achieved by genetic or pharmacologic inhibition of dynamin-related protein-1 (Drp1) or through overexpression of mitofusin-2 (Mfn2). Notably, we found that oral leflunomide, an FDA-approved arthritis drug, promoted a 2-fold increase in Mfn2 expression in tumors and was repurposed as a chemotherapeutic agent, improving the median survival of mice with spontaneous tumors by 50% compared with vehicle. We found that the chief tumor-suppressive mechanism of mitochondrial fusion was enhanced mitophagy, which proportionally reduced mitochondrial mass and ATP production. These data suggest that mitochondrial fusion is a specific and druggable regulator of pancreatic cancer growth that could be rapidly translated to the clinic.

Authors

Meifang Yu, Nicholas D. Nguyen, Yanqing Huang, Daniel Lin, Tara N. Fujimoto, Jessica M. Molkentine, Amit Deorukhkar, Ya’an Kang, F. Anthony San Lucas, Conrad J. Fernandes, Eugene J. Koay, Sonal Gupta, Haoqiang Ying, Albert C. Koong, Joseph M. Herman, Jason B. Fleming, Anirban Maitra, Cullen M. Taniguchi

×

Figure 7

Loss of Drp1 reduces mitochondrial mass by increased mitophagy.

Options: View larger image (or click on image) Download as PowerPoint
Loss of Drp1 reduces mitochondrial mass by increased mitophagy.
(A) Tota...
(A) Total mitochondria per cell decreased after induction of mitochondrial fusion, as measured by TEM. P values by unpaired t test are shown in the figure. (B) Decreased mitochondrial mass after Drp1 knockout. Statistical analysis by unpaired t test. (C) Immunoblot for mitochondrial complex I proteins in sgDrp1 KPC cells, with quantification in D and P values by unpaired t test. (E) Decreased complex I expression with Mfn2 expression. (F) Increased colocalization of Tom20 and LC3 in sgDrp1 cells, indicating enhanced mitophagy. Scale bar: 10 μm. Original magnification, ×60. (G) Quantified mitophagic cells from F, compared by unpaired t test. (H) Mitochondrial fusion heralds mitophagy, decreasing OXPHOS and impairing oncogenic proliferation and growth. Data are presented as mean  ±  SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts