Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Potassium acts through mTOR to regulate its own secretion
Mads Vaarby Sørensen, … , Wen-Hui Wang, David Pearce
Mads Vaarby Sørensen, … , Wen-Hui Wang, David Pearce
Published April 23, 2019
Citation Information: JCI Insight. 2019;4(11):e126910. https://doi.org/10.1172/jci.insight.126910.
View: Text | PDF
Research Article Cell biology Nephrology

Potassium acts through mTOR to regulate its own secretion

  • Text
  • PDF
Abstract

Potassium (K+) secretion by kidney tubule cells is central to electrolyte homeostasis in mammals. In the K+-secreting principal cells of the distal nephron, electrogenic Na+ transport by the epithelial sodium channel (ENaC) generates the electrical driving force for K+ transport across the apical membrane. Regulation of this process is attributable in part to aldosterone, which stimulates the gene transcription of the ENaC-regulatory kinase, SGK1. However, a wide range of evidence supports the conclusion that an unidentified aldosterone-independent pathway exists. We show here that in principal cells, K+ itself acts through the type 2 mTOR complex (mTORC2) to activate SGK1, which stimulates ENaC to enhance K+ excretion. The effect depends on changes in K+ concentration on the blood side of the cells, and requires basolateral membrane K+-channel activity. However, it does not depend on changes in aldosterone, or on enhanced distal delivery of Na+ from upstream nephron segments. These data strongly support the idea that K+ is sensed directly by principal cells to stimulate its own secretion by activating the mTORC2/SGK1 signaling module, and stimulate ENaC. We propose that this local effect acts in concert with aldosterone and increased Na+ delivery from upstream nephron segments to sustain K+ homeostasis.

Authors

Mads Vaarby Sørensen, Bidisha Saha, Iben Skov Jensen, Peng Wu, Niklas Ayasse, Catherine E. Gleason, Samuel Levi Svendsen, Wen-Hui Wang, David Pearce

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts