Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

miR-511-3p protects against cockroach allergen–induced lung inflammation by antagonizing CCL2
Danh C. Do, Jie Mu, Xia Ke, Karan Sachdeva, Zili Qin, Mei Wan, Faoud T. Ishmael, Peisong Gao
Danh C. Do, Jie Mu, Xia Ke, Karan Sachdeva, Zili Qin, Mei Wan, Faoud T. Ishmael, Peisong Gao
View: Text | PDF
Research Article Immunology Inflammation

miR-511-3p protects against cockroach allergen–induced lung inflammation by antagonizing CCL2

  • Text
  • PDF
Abstract

miR-511-3p, encoded by CD206/Mrc1, was demonstrated to reduce allergic inflammation and promote alternative (M2) macrophage polarization. Here, we sought to elucidate the fundamental mechanism by which miR-511-3p attenuates allergic inflammation and promotes macrophage polarization. Compared with WT mice, the allergen-challenged Mrc1–/– mice showed increased airway hyperresponsiveness (AHR) and inflammation. However, this increased AHR and inflammation were significantly attenuated when these mice were pretransduced with adeno-associated virus–miR-511-3p (AAV–miR-511-3p). Gene expression profiling of macrophages identified Ccl2 as one of the major genes that was highly expressed in M2 macrophages but antagonized by miR-511-3p. The interaction between miR-511-3p and Ccl2 was confirmed by in silico analysis and mRNA-miR pulldown assay. Further evidence for the inhibition of Ccl2 by miR-511-3p was given by reduced levels of Ccl2 in supernatants of miR-511-3p–transduced macrophages and in bronchoalveolar lavage fluids of AAV–miR-511-3p–infected Mrc1–/– mice. Mechanistically, we demonstrated that Ccl2 promotes M1 macrophage polarization by activating RhoA signaling through Ccr2. The interaction between Ccr2 and RhoA was also supported by coimmunoprecipitation assay. Importantly, inhibition of RhoA signaling suppressed cockroach allergen–induced AHR and lung inflammation. These findings suggest a potentially novel mechanism by which miR-511-3p regulates allergic inflammation and macrophage polarization by targeting Ccl2 and its downstream Ccr2/RhoA axis.

Authors

Danh C. Do, Jie Mu, Xia Ke, Karan Sachdeva, Zili Qin, Mei Wan, Faoud T. Ishmael, Peisong Gao

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 687 145
PDF 92 26
Figure 330 4
Supplemental data 67 13
Citation downloads 102 0
Totals 1,278 188
Total Views 1,466
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts