Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

The hepatic WASH complex is required for efficient plasma LDL and HDL cholesterol clearance
Melinde Wijers, … , Jan Albert Kuivenhoven, Bart van de Sluis
Melinde Wijers, … , Jan Albert Kuivenhoven, Bart van de Sluis
Published June 6, 2019
Citation Information: JCI Insight. 2019;4(11):e126462. https://doi.org/10.1172/jci.insight.126462.
View: Text | PDF | Corrigendum
Research Article Hepatology Metabolism

The hepatic WASH complex is required for efficient plasma LDL and HDL cholesterol clearance

  • Text
  • PDF
Abstract

The evolutionary conserved Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex is one of the crucial multiprotein complexes that facilitates endosomal recycling of transmembrane proteins. Defects in WASH components have been associated with inherited developmental and neurological disorders in humans. Here, we show that hepatic ablation of the WASH component Washc1 in chow-fed mice increases plasma concentrations of cholesterol in both LDLs and HDLs, without affecting hepatic cholesterol content, hepatic cholesterol synthesis, biliary cholesterol excretion, or hepatic bile acid metabolism. Elevated plasma LDL cholesterol was related to reduced hepatocytic surface levels of the LDL receptor (LDLR) and the LDLR-related protein LRP1. Hepatic WASH ablation also reduced the surface levels of scavenger receptor class B type I and, concomitantly, selective uptake of HDL cholesterol into the liver. Furthermore, we found that WASHC1 deficiency increases LDLR proteolysis by the inducible degrader of LDLR, but does not affect proprotein convertase subtilisin/kexin type 9–mediated LDLR degradation. Remarkably, however, loss of hepatic WASHC1 may sensitize LRP1 for proprotein convertase subtilisin/kexin type 9–induced degradation. Altogether, these findings identify the WASH complex as a regulator of LDL as well as HDL metabolism and provide in vivo evidence for endosomal trafficking of scavenger receptor class B type I in hepatocytes.

Authors

Melinde Wijers, Paolo Zanoni, Nalan Liv, Dyonne Y. Vos, Michelle Y. Jäckstein, Marieke Smit, Sanne Wilbrink, Justina C. Wolters, Ydwine T. van der Veen, Nicolette Huijkman, Daphne Dekker, Niels Kloosterhuis, Theo H. van Dijk, Daniel D. Billadeau, Folkert Kuipers, Judith Klumperman, Arnold von Eckardstein, Jan Albert Kuivenhoven, Bart van de Sluis

×

Usage data is cumulative from August 2021 through August 2022.

Usage JCI PMC
Text version 2,606 190
PDF 97 40
Figure 120 4
Supplemental data 37 8
Citation downloads 26 0
Totals 2,886 242
Total Views 3,128

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts