Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Proinflammatory IL-17 pathways dominate the architecture of the immunome in pediatric refractory epilepsy
Pavanish Kumar, … , Joo Guan Yeo, Salvatore Albani
Pavanish Kumar, … , Joo Guan Yeo, Salvatore Albani
Published March 26, 2019
Citation Information: JCI Insight. 2019;4(8):e126337. https://doi.org/10.1172/jci.insight.126337.
View: Text | PDF
Research Article Immunology Neuroscience

Proinflammatory IL-17 pathways dominate the architecture of the immunome in pediatric refractory epilepsy

  • Text
  • PDF
Abstract

Drug refractory epilepsy (RE) is a chronic neurological disease with varied etiology that represents a group of patients whose seizures do not respond to antiepileptic drugs. The immune system may have a role in seizure and epilepsy development, but the specific mechanisms of inflammation that lead to epileptogenesis and contribute to RE are unknown. Here, we used mass cytometry to comprehensively study the immune system of pediatric patients with RE and compared their immune profile and function with patients with age-matched autoimmune encephalitis (AIE) and healthy controls. Patients with RE and AIE displayed similar immune profiles overall, with changes in CD4+ and CD8+ T cell subsets and an unbalance toward proinflammatory IL-17 production. In addition, patients with RE uniquely showed an altered balance in NK cell subsets. A systems-level intercellular network analysis identified rewiring of the immune system, leading to loss of inhibitory/regulatory intercellular connections and emergence of proinflammatory pathogenic functions in neuroinflammatory immune cell networks in patients with AIE and RE. These data underscore the contribution of systemic inflammation to the pathogenesis of seizures and epileptogenesis and have direct translational implications in advancing diagnostics and therapeutics design.

Authors

Pavanish Kumar, Derrick Chan Wei Shih, Amanda Lim, Bhairav Paleja, Simon Ling, Lai Li Yun, Su Li Poh, Adeline Ngoh, Thaschawee Arkachaisri, Joo Guan Yeo, Salvatore Albani

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 1,338 226
PDF 95 86
Figure 165 17
Supplemental data 43 8
Citation downloads 37 0
Totals 1,678 337
Total Views 2,015

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts