Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

VIPergic neurons of the infralimbic and prelimbic cortices control palatable food intake through separate cognitive pathways
Brandon A. Newmyer, … , Marieke K. Jones, Michael M. Scott
Brandon A. Newmyer, … , Marieke K. Jones, Michael M. Scott
Published April 2, 2019
Citation Information: JCI Insight. 2019;4(9):e126283. https://doi.org/10.1172/jci.insight.126283.
View: Text | PDF
Research Article Metabolism Neuroscience

VIPergic neurons of the infralimbic and prelimbic cortices control palatable food intake through separate cognitive pathways

  • Text
  • PDF
Abstract

The prefrontal cortex controls food reward seeking and ingestion, playing important roles in directing attention, regulating motivation toward reward pursuit, and assigning reward salience and value. The cell types that mediate these behavioral functions, however, are not well described. We report here that optogenetic activation of vasoactive intestinal peptide–expressing (VIP-expressing) interneurons in both the infralimbic (IL) and prelimbic (PL) divisions of the medial prefrontal cortex in mice is sufficient to reduce acute, binge-like intake of high-calorie palatable food in the absence of any effect on low-calorie rodent chow intake in the sated animal. In addition, we discovered that the behavioral mechanisms associated with these changes in feeding differed between animals that underwent either IL or PL VIPergic stimulation. Although IL VIP neurons showed the ability to reduce palatable food intake, this effect was dependent upon the novelty and relative value of the food source. In addition, IL VIP neuron activation significantly reduced novel object and novel social investigative behavior. Activation of PL VIP neurons, however, produced a reduction in high-calorie palatable food intake that was independent of food novelty. Neither IL nor PL VIP excitation changed motivation to obtain food reward. Our data show how neurochemically defined populations of cortical interneurons can regulate specific aspects of food reward–driven behavior, resulting in a selective reduction in intake of highly valued food.

Authors

Brandon A. Newmyer, Ciarra M. Whindleton, Peter M. Klein, Mark P. Beenhakker, Marieke K. Jones, Michael M. Scott

×

Usage data is cumulative from September 2024 through September 2025.

Usage JCI PMC
Text version 212 53
PDF 45 8
Figure 189 6
Table 30 0
Citation downloads 43 0
Totals 519 67
Total Views 586
Created with Highcharts 3.0.9MonthTotalSep 24Oct 24Nov 24Dec 24Jan 25Feb 25Mar 25Apr 25May 25Jun 25Jul 25Aug 25Sep 250100200300400500600700
JCI Citation downloads
JCI Figure
JCI Text version
JCI PDF
JCI Table
PMC Text version
PMC PDF
Total JCI usage
Total PMC usage
Total usage
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts