Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
The combination of loss of glyoxalase1 and obesity results in hyperglycemia
Elisabeth Lodd, Lucas M. Wiggenhauser, Jakob Morgenstern, Thomas H. Fleming, Gernot Poschet, Michael Büttner, Christoph T. Tabler, David P. Wohlfart, Peter P. Nawroth, Jens Kroll
Elisabeth Lodd, Lucas M. Wiggenhauser, Jakob Morgenstern, Thomas H. Fleming, Gernot Poschet, Michael Büttner, Christoph T. Tabler, David P. Wohlfart, Peter P. Nawroth, Jens Kroll
View: Text | PDF
Research Article Endocrinology Metabolism

The combination of loss of glyoxalase1 and obesity results in hyperglycemia

  • Text
  • PDF
Abstract

The increased formation of methylglyoxal (MG) under hyperglycemia is associated with the development of microvascular complications in patients with diabetes mellitus; however, the effects of elevated MG levels in vivo are poorly understood. In zebrafish, a transient knockdown of glyoxalase 1, the main MG detoxifying system, led to the elevation of endogenous MG levels and blood vessel alterations. To evaluate effects of a permanent knockout of glyoxalase 1 in vivo, glo1–/– zebrafish mutants were generated using CRISPR/Cas9. In addition, a diet-induced–obesity zebrafish model was used to analyze glo1–/– zebrafish under high nutrient intake. Glo1–/– zebrafish survived until adulthood without growth deficit and showed increased tissue MG concentrations. Impaired glucose tolerance developed in adult glo1–/– zebrafish and was indicated by increased postprandial blood glucose levels and postprandial S6 kinase activation. Challenged by an overfeeding period, fasting blood glucose levels in glo1–/– zebrafish were increased which translated into retinal blood vessel alterations. Thus, the data have identified a defective MG detoxification as a metabolic prerequisite and glyoxalase 1 alterations as a genetic susceptibility to the development of type 2 diabetes mellitus under high nutrition intake.

Authors

Elisabeth Lodd, Lucas M. Wiggenhauser, Jakob Morgenstern, Thomas H. Fleming, Gernot Poschet, Michael Büttner, Christoph T. Tabler, David P. Wohlfart, Peter P. Nawroth, Jens Kroll

×

Figure 2

Loss of Glo1 could not aggravate the MG-induced blood vessel hyperbranch formation in zebrafish larvae.

Options: View larger image (or click on image) Download as PowerPoint
Loss of Glo1 could not aggravate the MG-induced blood vessel hyperbranch...
(A) Loss of Glo1 enzyme activity has no effect on trunk vessel morphology, whereas incubation in 500 μM MG leads to increased formation of hyperbranches (white arrowheads) in the zebrafish trunk vasculature of glo1–/– and glo1+/+ larvae at 96 hpf. Light microscopic images show gross morphology of zebrafish larvae and black boxes indicate region seen in the confocal images. White scale bar: 100 μm. Black scale bar: 500 μm. (B) Quantification of hyperbranch formation; n = 29–31 larvae (glo1+/+) and n = 25–27 larvae (glo1–/–), mean ± SEM. For statistical analysis 1-way ANOVA followed by Sidak’s multiple-comparisons test was applied. *P < 0.05, ***P < 0.001. DLAV, dorsal longitudinal anastomotic vessel; ISV, intersegmental vessel; MG, methylglyoxal; ns, not significant.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts