Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Ryanodine receptor–bound calmodulin is essential to protect against catecholaminergic polymorphic ventricular tachycardia
Yoshihide Nakamura, … , Shinichi Okuda, Masafumi Yano
Yoshihide Nakamura, … , Shinichi Okuda, Masafumi Yano
Published June 6, 2019
Citation Information: JCI Insight. 2019;4(11):e126112. https://doi.org/10.1172/jci.insight.126112.
View: Text | PDF
Research Article Cardiology

Ryanodine receptor–bound calmodulin is essential to protect against catecholaminergic polymorphic ventricular tachycardia

  • Text
  • PDF
Abstract

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is caused by a single point mutation in the cardiac type 2 ryanodine receptor (RyR2). Using a knockin (KI) mouse model (R2474S/+), we previously reported that a single point mutation within the RyR2 sensitizes the channel to agonists, primarily mediated by defective interdomain interaction within the RyR2 and subsequent dissociation of calmodulin (CaM) from the RyR2. Here, we examined whether CPVT can be genetically rescued by enhancing the binding affinity of CaM to the RyR2. We first determined whether there is a possible amino acid substitution within the CaM-binding domain in the RyR2 (3584–3603 residues) that can enhance its binding affinity to CaM and found that V3599K substitution showed the highest binding affinity of CaM to the CaM-binding domain. Hence, we generated a heterozygous KI mouse model (V3599K/+) with a single amino acid substitution in the CaM-binding domain of the RyR2 and crossbred it with the heterozygous CPVT-associated R2474S/+-KI mouse to obtain a double-heterozygous R2474S/V3599K-KI mouse model. The CPVT phenotypes — bidirectional or polymorphic ventricular tachycardia, spontaneous Ca2+ transients, and Ca2+ sparks — were all inhibited in the R2474S/V3599K mice. Thus, enhancement of the CaM-binding affinity of the RyR2 is essential to prevent CPVT-associated arrhythmogenesis.

Authors

Yoshihide Nakamura, Takeshi Yamamoto, Shigeki Kobayashi, Masaki Tamitani, Yoriomi Hamada, Go Fukui, Xiaojuan Xu, Shigehiko Nishimura, Takayoshi Kato, Hitoshi Uchinoumi, Tetsuro Oda, Shinichi Okuda, Masafumi Yano

×

Full Text PDF | Download (8.77 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts