Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Increased attrition of memory T cells during sepsis requires 2B4
Jianfeng Xie, … , Craig M. Coopersmith, Mandy L. Ford
Jianfeng Xie, … , Craig M. Coopersmith, Mandy L. Ford
Published May 2, 2019
Citation Information: JCI Insight. 2019;4(9):e126030. https://doi.org/10.1172/jci.insight.126030.
View: Text | PDF
Research Article Immunology Infectious disease

Increased attrition of memory T cells during sepsis requires 2B4

  • Text
  • PDF
Abstract

Recent seminal studies have revealed that laboratory mice differ from adult humans with regard to the frequency, number, and distribution of memory T cells. Because our data show that memory T cells are more susceptible to sepsis-induced death than naive T cells, in this study we developed a model in which mice possess a memory T cell compartment more similar to that of adult humans, to better study immune responses during sepsis in the more physiologically relevant context of high frequencies of memory T cells. Using this model, we found that CD44hi memory T cells significantly upregulated the coinhibitory molecule 2B4 during sepsis, and 2B4+ memory T cells coexpressed markers of both activation and exhaustion. Genetic deficiency in 2B4 resulted in decreased mortality during sepsis. Mechanistically, this decreased mortality was associated with reduced caspase-3/7+ apoptotic T cells in 2B4–/– relative to WT, septic hosts. These results were corroborated by analysis of PBMCs isolated from human patients with sepsis, which showed increased frequencies of caspase-3/7+ apoptotic cells among 2B4+ relative to 2B4– T cells. Thus, 2B4 plays a critical role in sepsis-induced apoptosis in both murine memory T cells and those isolated from human patients with sepsis.

Authors

Jianfeng Xie, Ching-wen Chen, Yini Sun, Sonia J. Laurie, Wenxiao Zhang, Shunsuke Otani, Gregory S. Martin, Craig M. Coopersmith, Mandy L. Ford

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (172.82 KB)

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts