Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer
Jeffrey I. Zwicker, … , Robert Flaumenhaft, on behalf of CATIQ Investigators
Jeffrey I. Zwicker, … , Robert Flaumenhaft, on behalf of CATIQ Investigators
Published January 17, 2019
Citation Information: JCI Insight. 2019;4(4):e125851. https://doi.org/10.1172/jci.insight.125851.
View: Text | PDF
Clinical Medicine Clinical trials Hematology

Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer

  • Text
  • PDF
Abstract

BACKGROUND. Protein disulfide isomerase (PDI) is a thiol isomerase secreted by vascular cells that is required for thrombus formation. Quercetin flavonoids inhibit PDI activity and block platelet accumulation and fibrin generation at the site of a vascular injury in mouse models, but the clinical effect of targeting extracellular PDI in humans has not been studied. METHODS. We conducted a multicenter phase II trial of sequential dosing cohorts to evaluate the efficacy of targeting PDI with isoquercetin to reduce hypercoagulability in cancer patients at high risk for thrombosis. Patients received isoquercetin at 500 mg (cohort A, n = 28) or 1000 mg (cohort B, n = 29) daily for 56 days, with laboratory assays performed at baseline and the end of the study, along with bilateral lower extremity compression ultrasound. The primary efficacy endpoint was a reduction in D-dimer, and the primary clinical endpoint included pulmonary embolism or proximal deep vein thrombosis. RESULTS. The administration of 1000 mg isoquercetin decreased D-dimer plasma concentrations by a median of –21.9% (P = 0.0002). There were no primary VTE events or major hemorrhages observed in either cohort. Isoquercetin increased PDI inhibitory activity in plasma (37.0% in cohort A, n = 25, P < 0.001; 73.3% in cohort B, n = 22, P < 0.001, respectively). Corroborating the antithrombotic efficacy, we also observed a significant decrease in platelet-dependent thrombin generation (cohort A median decrease –31.1%, P = 0.007; cohort B median decrease –57.2%, P = 0.004) and circulating soluble P selectin at the 1000 mg isoquercetin dose (median decrease –57.9%, P < 0.0001). CONCLUSIONS. Isoquercetin targets extracellular PDI and improves markers of coagulation in advanced cancer patients. TRIAL REGISTRATION. Clinicaltrials.gov NCT02195232. FUNDING. Quercegen Pharmaceuticals; National Heart, Lung, and Blood Institute (NHLBI; U54HL112302, R35HL135775, and T32HL007917); and NHLBI Consortium Linking Oncology and Thrombosis (U01HL143365).

Authors

Jeffrey I. Zwicker, Benjamin L. Schlechter, Jack D. Stopa, Howard A. Liebman, Anita Aggarwal, Maneka Puligandla, Thomas Caughey, Kenneth A. Bauer, Nancy Kuemmerle, Ellice Wong, Ted Wun, Marilyn McLaughlin, Manuel Hidalgo, Donna Neuberg, Bruce Furie, Robert Flaumenhaft, on behalf of CATIQ Investigators

×

Figure 6

Measurement of plasma P selectin levels following isoquercetin administration.

Options: View larger image (or click on image) Download as PowerPoint
Measurement of plasma P selectin levels following isoquercetin administr...
Waterfall plot showing baseline and follow-up soluble P selectin values in plasma following isoquercetin administration. Change (%) for each patient shown in a waterfall plot for 500 mg isoquercetin (A) and 1000 mg isoquercetin (B).

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts