Growth hormone (GH) decreases with age, and GH therapy has been advocated by some to sustain lean muscle mass and vigor in aging patients and advocated by athletes to enhance performance. Environmental insults and aging lead to DNA damage, which — if unrepaired — results in chromosomal instability and tumorigenesis. We show that GH suppresses epithelial DNA damage repair and blocks ataxia telangiectasia mutated (ATM) kinase autophosphorylation with decreased activity. Decreased phosphorylation of ATM target proteins p53, checkpoint kinase 2 (Chk2), and histone 2A variant led to decreased DNA repair by nonhomologous end-joining. In vivo, prolonged high GH levels resulted in a 60% increase in unrepaired colon epithelial DNA damage. GH suppression of ATM was mediated by induced tripartite motif containing protein 29 (TRIM29) and attenuated tat interacting protein 60 kDa (Tip60). By contrast, DNA repair was increased in human nontumorous colon cells (hNCC) where GH receptor (GHR) was stably suppressed and in colon tissue derived from GHR–/– mice. hNCC treated with etoposide and GH showed enhanced transformation, as evidenced by increased growth in soft agar. In mice bearing human colon GH-secreting xenografts, metastatic lesions were increased. The results elucidate a mechanism underlying GH-activated epithelial cell transformation and highlight an adverse risk for inappropriate adult GH treatment.
Vera Chesnokova, Svetlana Zonis, Robert Barrett, Hiraku Kameda, Kolja Wawrowsky, Anat Ben-Shlomo, Masaaki Yamamoto, John Gleeson, Catherine Bresee, Vera Gorbunova, Shlomo Melmed
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 424 | 364 |
68 | 35 | |
Figure | 248 | 2 |
Supplemental data | 38 | 4 |
Citation downloads | 50 | 0 |
Totals | 828 | 405 |
Total Views | 1,233 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.