Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Direct activation of PP2A for the treatment of tyrosine kinase inhibitor–resistant lung adenocarcinoma
Rita Tohmé, … , Jaya Sangodkar, Goutham Narla
Rita Tohmé, … , Jaya Sangodkar, Goutham Narla
Published February 21, 2019
Citation Information: JCI Insight. 2019;4(4):e125693. https://doi.org/10.1172/jci.insight.125693.
View: Text | PDF
Research Article Oncology Therapeutics

Direct activation of PP2A for the treatment of tyrosine kinase inhibitor–resistant lung adenocarcinoma

  • Text
  • PDF
Abstract

Although tyrosine kinase inhibitors (TKIs) have demonstrated significant efficacy in advanced lung adenocarcinoma (LUAD) patients with pathogenic alterations in EGFR, most patients develop acquired resistance to these agents via mechanisms enabling the sustained activation of the PI3K and MAPK oncogenic pathways downstream of EGFR. The tumor suppressor protein phosphatase 2A (PP2A) acts as a negative regulator of these pathways. We hypothesize that activation of PP2A simultaneously inhibits the PI3K and MAPK pathways and represents a promising therapeutic strategy for the treatment of TKI-resistant LUAD. After establishing the efficacy of small molecule activators of PP2A (SMAPs) in a transgenic EGFRL858R model and TKI-sensitive cell lines, we evaluated their therapeutic potential in vitro and in vivo in TKI-resistant models. PP2A activation resulted in apoptosis, significant tumor growth inhibition, and downregulation of PI3K and MAPK pathways. Combination of SMAPs and TKI afatinib resulted in an enhanced effect on the downregulation of the PI3K pathway via degradation of the PP2A endogenous inhibitor CIP2A. An improved effect on tumor growth inhibition was observed in a TKI-resistant xenograft mouse model treated with a combination of both agents. These collective data support the development of PP2A activators for the treatment of TKI-resistant LUAD.

Authors

Rita Tohmé, Sudeh Izadmehr, Sai Gandhe, Giancarlo Tabaro, Sanjay Vallabhaneni, Ava Thomas, Neal Vasireddi, Neil S. Dhawan, Avi Ma’ayan, Neelesh Sharma, Matthew D. Galsky, Michael Ohlmeyer, Jaya Sangodkar, Goutham Narla

×

Usage data is cumulative from February 2022 through February 2023.

Usage JCI PMC
Text version 1,116 336
PDF 116 70
Figure 211 3
Supplemental data 81 17
Citation downloads 34 0
Totals 1,558 426
Total Views 1,984

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts