Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Exogenous sickle erythrocytes combined with vascular disruption trigger disseminated tumor vaso-occlusion and lung tumor regression
Chiao-Wang Sun, … , Tim M. Townes, David S. Terman
Chiao-Wang Sun, … , Tim M. Townes, David S. Terman
Published April 4, 2019
Citation Information: JCI Insight. 2019;4(7):e125535. https://doi.org/10.1172/jci.insight.125535.
View: Text | PDF
Research Article Hematology Oncology

Exogenous sickle erythrocytes combined with vascular disruption trigger disseminated tumor vaso-occlusion and lung tumor regression

  • Text
  • PDF
Abstract

Hypoxic tumor niches are chief causes of treatment resistance and tumor recurrence. Sickle erythrocytes’ (SSRBCs’) intrinsic oxygen-sensing functionality empowers them to access such hypoxic niches wherein they form microaggregates that induce focal vessel closure. In search of measures to augment the scale of SSRBC-mediated tumor vaso-occlusion, we turned to the vascular disrupting agent, combretastatin A-4 (CA-4). CA-4 induces selective tumor endothelial injury, blood stasis, and hypoxia but fails to eliminate peripheral tumor foci. In this article, we show that introducing deoxygenated SSRBCs into tumor microvessels treated with CA-4 and sublethal radiation (SR) produces a massive surge of tumor vaso-occlusion and broadly propagated tumor infarctions that engulfs treatment-resistant hypoxic niches and eradicates established lung tumors. Tumor regression was histologically corroborated by significant treatment effect. Treated tumors displayed disseminated microvessels occluded by tightly packed SSRBCs along with widely distributed pimidazole-positive hypoxic tumor cells. Humanized HbS-knockin mice (SSKI) but not HbA-knockin mice (AAKI) showed a similar treatment response underscoring SSRBCs as the paramount tumoricidal effectors. Thus, CA-4-SR–remodeled tumor vessels license SSRBCs to produce an unprecedented surge of tumor vaso-occlusion and infarction that envelops treatment-resistant tumor niches resulting in complete tumor regression. Strategically deployed, these innovative tools constitute a major conceptual advance with compelling translational potential.

Authors

Chiao-Wang Sun, Li-Chen Wu, Mamta Wankhede, Dezhi Wang, Jutta Thoerner, Lawrence Woody, Brian S. Sorg, Tim M. Townes, David S. Terman

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 170 15
PDF 69 13
Figure 349 0
Citation downloads 92 0
Totals 680 28
Total Views 708

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts