Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance
Dongwon Choi, Eunkyung Park, Eunson Jung, Boksik Cha, Somin Lee, James Yu, Paul M. Kim, Sunju Lee, Yeo Jin Hong, Chester J. Koh, Chang-Won Cho, Yifan Wu, Noo Li Jeon, Alex K. Wong, Laura Shin, S. Ram Kumar, Ivan Bermejo-Moreno, R. Sathish Srinivasan, Il-Taeg Cho, Young-Kwon Hong
Dongwon Choi, Eunkyung Park, Eunson Jung, Boksik Cha, Somin Lee, James Yu, Paul M. Kim, Sunju Lee, Yeo Jin Hong, Chester J. Koh, Chang-Won Cho, Yifan Wu, Noo Li Jeon, Alex K. Wong, Laura Shin, S. Ram Kumar, Ivan Bermejo-Moreno, R. Sathish Srinivasan, Il-Taeg Cho, Young-Kwon Hong
View: Text | PDF
Research Article Vascular biology

Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance

  • Text
  • PDF
Abstract

The lymphatic system plays crucial roles in tissue homeostasis, lipid absorption, and immune cell trafficking. Although lymphatic valves ensure unidirectional lymph flows, the flow itself controls lymphatic valve formation. Here, we demonstrate that a mechanically activated ion channel Piezo1 senses oscillating shear stress (OSS) and incorporates the signal into the genetic program controlling lymphatic valve development and maintenance. Time-controlled deletion of Piezo1 using a pan-endothelial Cre driver (Cdh5[PAC]-CreERT2) or lymphatic-specific Cre driver (Prox1-CreERT2) equally inhibited lymphatic valve formation in newborn mice. Furthermore, Piezo1 deletion in adult lymphatics caused substantial lymphatic valve degeneration. Piezo1 knockdown in cultured lymphatic endothelial cells (LECs) largely abrogated the OSS-induced upregulation of the lymphatic valve signature genes. Conversely, ectopic Piezo1 overexpression upregulated the lymphatic valve genes in the absence of OSS. Remarkably, activation of Piezo1 using chemical agonist Yoda1 not only accelerated lymphatic valve formation in animals, but also triggered upregulation of some lymphatic valve genes in cultured LECs without exposure to OSS. In summary, our studies together demonstrate that Piezo1 is the force sensor in the mechanotransduction pathway controlling lymphatic valve development and maintenance, and Piezo1 activation is a potentially novel therapeutic strategy for congenital and surgery-associated lymphedema.

Authors

Dongwon Choi, Eunkyung Park, Eunson Jung, Boksik Cha, Somin Lee, James Yu, Paul M. Kim, Sunju Lee, Yeo Jin Hong, Chester J. Koh, Chang-Won Cho, Yifan Wu, Noo Li Jeon, Alex K. Wong, Laura Shin, S. Ram Kumar, Ivan Bermejo-Moreno, R. Sathish Srinivasan, Il-Taeg Cho, Young-Kwon Hong

×

Usage data is cumulative from February 2025 through February 2026.

Usage JCI PMC
Text version 1,892 430
PDF 247 112
Figure 788 4
Supplemental data 96 7
Citation downloads 150 0
Totals 3,173 553
Total Views 3,726
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts