Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Senescence cell–associated extracellular vesicles serve as osteoarthritis disease and therapeutic markers
Ok Hee Jeon, … , Kenneth W. Witwer, Jennifer H. Elisseeff
Ok Hee Jeon, … , Kenneth W. Witwer, Jennifer H. Elisseeff
Published April 4, 2019
Citation Information: JCI Insight. 2019;4(7):e125019. https://doi.org/10.1172/jci.insight.125019.
View: Text | PDF
Research Article Aging Therapeutics

Senescence cell–associated extracellular vesicles serve as osteoarthritis disease and therapeutic markers

  • Text
  • PDF
Abstract

Senescent cells (SnCs) are increasingly recognized as central effector cells in age-related pathologies. Extracellular vesicles (EVs) are potential cellular communication tools through which SnCs exert central effector functions in the local tissue environment. To test this hypothesis in a medical indication that could be validated clinically, we evaluated EV production from SnCs enriched from chondrocytes isolated from human arthritic cartilage. EV production increased in a dose-responsive manner as the concentration of SnCs increased. The EVs were capable of transferring senescence to nonsenescent chondrocytes and inhibited cartilage formation by non-SnCs. microRNA (miR) profiles of EVs isolated from human arthritic synovial fluid did not fully overlap with the senescent chondrocyte EV profiles. The effect of SnC clearance was tested in a murine model of posttraumatic osteoarthritis. miR and protein profiles changed after senolytic treatment but varied depending on age. In young animals, senolytic treatment altered expression of miR-34a, -30c, -125a, -24, -92a, -150, and -186, and this expression correlated with cartilage production. The primary changes in EV contents in aged mice after senolytic treatment, which only reduced pain and degeneration, were immune related. In sum, EV contents found in synovial fluid may serve as a diagnostic for arthritic disease and indicator for therapeutic efficacy of senolytic treatment.

Authors

Ok Hee Jeon, David R. Wilson, Cristina C. Clement, Sona Rathod, Christopher Cherry, Bonita Powell, Zhenghong Lee, Ahmad M. Khalil, Jordan J. Green, Judith Campisi, Laura Santambrogio, Kenneth W. Witwer, Jennifer H. Elisseeff

×

Figure 4

Identification of proteins with altered levels in synovial EVs derived from young OA mice after selective SnC clearance.

Options: View larger image (or click on image) Download as PowerPoint
Identification of proteins with altered levels in synovial EVs derived f...
(A) Venn diagram of the number of proteins quantified by mass spectrometry and heatmap of upregulated or downregulated proteins (P < 0.05 calculated by a right-tailed Fisher’s exact test, fold change > 2, n = 3 per group). (B and C) Classification of the significantly regulated proteins according to their roles in cellular components and molecular functions. (D) Significant function and disease roles were analyzed by ingenuity pathway analysis (IPA) from upregulated and downregulated proteins after treatment with UBX0101. Bars with positive Z-scores indicate that functional activity is increased, whereas negative Z-scores indicate decreased activity.

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts