Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Sensitive and adaptable pharmacological control of CAR T cells through extracellular receptor dimerization
Wai-Hang Leung, … , Jordan Jarjour, Alexander Astrakhan
Wai-Hang Leung, … , Jordan Jarjour, Alexander Astrakhan
Published April 30, 2019
Citation Information: JCI Insight. 2019;4(11):e124430. https://doi.org/10.1172/jci.insight.124430.
View: Text | PDF
Research Article Oncology Therapeutics

Sensitive and adaptable pharmacological control of CAR T cells through extracellular receptor dimerization

  • Text
  • PDF
Abstract

Chimeric antigen receptor (CAR) T cell therapies have achieved promising outcomes in several cancers; however, more challenging oncology indications may necessitate advanced antigen receptor designs and functions. Here we describe a bipartite receptor system composed of separate antigen-targeting and signal transduction polypeptides, each containing an extracellular dimerization domain. We demonstrate that T cell activation remains antigen dependent but can only be achieved in the presence of a dimerizing drug, rapamycin. Studies performed in vitro and in xenograft mouse models illustrate equivalent to superior antitumor potency compared with currently used CAR designs, and at rapamycin concentrations well below immunosuppressive levels. We further show that the extracellular positioning of the dimerization domains enables the administration of recombinant retargeting modules, potentially extending antigen targeting. Overall, this regulatable CAR design has exquisite drug sensitivity, provides robust antitumor responses, and is flexible for multiplex antigen targeting or retargeting, which may further assist the development of safe, potent, and durable T cell therapeutics.

Authors

Wai-Hang Leung, Joel Gay, Unja Martin, Tracy E. Garrett, Holly M. Horton, Michael T. Certo, Bruce R. Blazar, Richard A. Morgan, Philip D. Gregory, Jordan Jarjour, Alexander Astrakhan

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts