Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia
Irini Manoli, Justin R. Sysol, Madeline W. Epping, Lina Li, Cindy Wang, Jennifer L. Sloan, Alexandra Pass, Jack Gagné, Yiouli P. Ktena, Lingli Li, Niraj S. Trivedi, Bazoumana Ouattara, Patricia M. Zerfas, Victoria Hoffmann, Mones Abu-Asab, Maria G. Tsokos, David E. Kleiner, Caterina Garone, Kristina Cusmano-Ozog, Gregory M. Enns, Hilary J. Vernon, Hans C. Andersson, Stephanie Grunewald, Abdel G. Elkahloun, Christiane L. Girard, Jurgen Schnermann, Salvatore DiMauro, Eva Andres-Mateos, Luk H. Vandenberghe, Randy J. Chandler, Charles P. Venditti
Irini Manoli, Justin R. Sysol, Madeline W. Epping, Lina Li, Cindy Wang, Jennifer L. Sloan, Alexandra Pass, Jack Gagné, Yiouli P. Ktena, Lingli Li, Niraj S. Trivedi, Bazoumana Ouattara, Patricia M. Zerfas, Victoria Hoffmann, Mones Abu-Asab, Maria G. Tsokos, David E. Kleiner, Caterina Garone, Kristina Cusmano-Ozog, Gregory M. Enns, Hilary J. Vernon, Hans C. Andersson, Stephanie Grunewald, Abdel G. Elkahloun, Christiane L. Girard, Jurgen Schnermann, Salvatore DiMauro, Eva Andres-Mateos, Luk H. Vandenberghe, Randy J. Chandler, Charles P. Venditti
View: Text | PDF
Research Article Genetics Metabolism

FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia

  • Text
  • PDF
Abstract

Methylmalonic acidemia (MMA), an organic acidemia characterized by metabolic instability and multiorgan complications, is most frequently caused by mutations in methylmalonyl-CoA mutase (MUT). To define the metabolic adaptations in MMA in acute and chronic settings, we studied a mouse model generated by transgenic expression of Mut in the muscle. Mut–/–;TgINS-MCK-Mut mice accurately replicate the hepatorenal mitochondriopathy and growth failure seen in severely affected patients and were used to characterize the response to fasting. The hepatic transcriptome in MMA mice was characterized by the chronic activation of stress-related pathways and an aberrant fasting response when compared with controls. A key metabolic regulator, Fgf21, emerged as a significantly dysregulated transcript in mice and was subsequently studied in a large patient cohort. The concentration of plasma FGF21 in MMA patients correlated with disease subtype, growth indices, and markers of mitochondrial dysfunction but was not affected by renal disease. Restoration of liver Mut activity, by transgenesis and liver-directed gene therapy in mice or liver transplantation in patients, drastically reduced plasma FGF21 and was associated with improved outcomes. Our studies identify mitocellular hormesis as a hepatic adaptation to metabolic stress in MMA and define FGF21 as a highly predictive disease biomarker.

Authors

Irini Manoli, Justin R. Sysol, Madeline W. Epping, Lina Li, Cindy Wang, Jennifer L. Sloan, Alexandra Pass, Jack Gagné, Yiouli P. Ktena, Lingli Li, Niraj S. Trivedi, Bazoumana Ouattara, Patricia M. Zerfas, Victoria Hoffmann, Mones Abu-Asab, Maria G. Tsokos, David E. Kleiner, Caterina Garone, Kristina Cusmano-Ozog, Gregory M. Enns, Hilary J. Vernon, Hans C. Andersson, Stephanie Grunewald, Abdel G. Elkahloun, Christiane L. Girard, Jurgen Schnermann, Salvatore DiMauro, Eva Andres-Mateos, Luk H. Vandenberghe, Randy J. Chandler, Charles P. Venditti

×

Figure 5

Plasma FGF21 response to organ transplantation.

Options: View larger image (or click on image) Download as PowerPoint
Plasma FGF21 response to organ transplantation.
(A) Liver or combined li...
(A) Liver or combined liver and kidney but not isolated kidney transplant recipients had a significant lower plasma FGF21 concentrations than nontransplanted mut0 patients (mean ± SEM; 13,953 ± 12,611 pg/ml vs. 467.8 ± 522.9, n = 10; P < 0.002, paired Wilcoxon test). The fold change in FGF21 was more significant than the change in plasma methylmalonic acid concentrations (from 2,854 ± 2,452 to 298.4 ± 171.9; P < 0.0059; n = 10). (B) FGF21 plasma concentrations measured before and after LT/LKT (n = 12) showed uniform and sustained improvement. A late increase more than 15 years after LKT was observed in a mut0 patient, who received a partial auxiliary liver transplant and a second case with morbid obesity. (C) Kidney transplant recipients (n = 5) experienced a varied response in plasma FGF21 levels. Two patients showed increased FGF21, correlating with the severity of their disease progression.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts