A vast body of literature has established G protein–coupled receptor kinase 2 (GRK2; family: β-adrenergic receptor kinases [βARKs]) as a key player in the development and progression of heart failure. Inhibition of GRK2 improves cardiac function after injury in numerous animal models. In recent years, discovery of several noncanonical GRK2 targets has expanded our view of this kinase. This article describes the exciting finding that cardiac GRK2 activity can regulate whole-body metabolism. Transgenic mice with cardiac-specific expression of a peptide inhibitor of GRK2 (TgβARKct) display an enhanced obesogenic phenotype when fed a high-fat diet (HFD). In contrast, mice with cardiac-specific overexpression of GRK2 (TgGRK2) show resistance to HFD-induced obesity. White adipose tissue (WAT) mass was significantly enhanced in HFD-fed TgβARKct mice. Furthermore, regulators of adipose differentiation were differentially regulated in WAT from mice with gain or loss of GRK2 function. Using complex metabolomics, we found that cardiac GRK2 signaling altered myocardial branched-chain amino acid (BCAA) and endocannabinoid metabolism. In addition, it modulated circulating BCAA and endocannabinoid metabolite profiles on mice fed an HFD. We also found that one of the BCAA metabolites identified here enhances adipocyte differentiation in vitro. These results suggest that metabolic changes in the heart due to GRK2 signaling on mice fed an HFD control whole-body metabolism.
Benjamin P. Woodall, Kenneth S. Gresham, Meryl A. Woodall, Mesele-Christina Valenti, Alessandro Cannavo, Jessica Pfleger, J. Kurt Chuprun, Konstantinos Drosatos, Walter J. Koch
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 509 | 61 |
70 | 28 | |
Figure | 149 | 1 |
Table | 120 | 0 |
Supplemental data | 31 | 0 |
Citation downloads | 56 | 0 |
Totals | 935 | 90 |
Total Views | 1,025 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.