Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms
Soravis Osataphan, Chiara Macchi, Garima Singhal, Jeremy Chimene-Weiss, Vicencia Sales, Chisayo Kozuka, Jonathan M. Dreyfuss, Hui Pan, Yanin Tangcharoenpaisan, Jordan Morningstar, Robert Gerszten, Mary-Elizabeth Patti
Soravis Osataphan, Chiara Macchi, Garima Singhal, Jeremy Chimene-Weiss, Vicencia Sales, Chisayo Kozuka, Jonathan M. Dreyfuss, Hui Pan, Yanin Tangcharoenpaisan, Jordan Morningstar, Robert Gerszten, Mary-Elizabeth Patti
View: Text | PDF
Research Article Hepatology Metabolism

SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms

  • Text
  • PDF
Abstract

Pharmacologic inhibition of the renal sodium/glucose cotransporter-2 induces glycosuria and reduces glycemia. Given that SGLT2 inhibitors (SGLT2i) reduce mortality and cardiovascular risk in type 2 diabetes, improved understanding of molecular mechanisms mediating these metabolic effects is required. Treatment of obese but nondiabetic mice with the SGLT2i canagliflozin (CANA) reduces adiposity, improves glucose tolerance despite reduced plasma insulin, increases plasma ketones, and improves plasma lipid profiles. Utilizing an integrated transcriptomic-metabolomics approach, we demonstrate that CANA modulates key nutrient-sensing pathways, with activation of 5′ AMP-activated protein kinase (AMPK) and inhibition of mechanistic target of rapamycin (mTOR), independent of insulin or glucagon sensitivity or signaling. Moreover, CANA induces transcriptional reprogramming to activate catabolic pathways, increase fatty acid oxidation, reduce hepatic steatosis and diacylglycerol content, and increase hepatic and plasma levels of FGF21. Given that these phenotypes mirror the effects of FGF21 to promote lipid oxidation, ketogenesis, and reduction in adiposity, we hypothesized that FGF21 is required for CANA action. Using FGF21-null mice, we demonstrate that FGF21 is not required for SGLT2i-mediated induction of lipid oxidation and ketogenesis but is required for reduction in fat mass and activation of lipolysis. Taken together, these data demonstrate that SGLT2 inhibition triggers a fasting-like transcriptional and metabolic paradigm but requires FGF21 for reduction in adiposity.

Authors

Soravis Osataphan, Chiara Macchi, Garima Singhal, Jeremy Chimene-Weiss, Vicencia Sales, Chisayo Kozuka, Jonathan M. Dreyfuss, Hui Pan, Yanin Tangcharoenpaisan, Jordan Morningstar, Robert Gerszten, Mary-Elizabeth Patti

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,489 295
PDF 166 72
Figure 469 12
Supplemental data 63 5
Citation downloads 152 0
Totals 2,339 384
Total Views 2,723
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts