Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Colonic epithelial miR-31 associates with the development of Crohn’s phenotypes
Benjamin P. Keith, … , Praveen Sethupathy, Shehzad Z. Sheikh
Benjamin P. Keith, … , Praveen Sethupathy, Shehzad Z. Sheikh
Published October 4, 2018
Citation Information: JCI Insight. 2018;3(19):e122788. https://doi.org/10.1172/jci.insight.122788.
View: Text | PDF
Clinical Medicine Gastroenterology Genetics

Colonic epithelial miR-31 associates with the development of Crohn’s phenotypes

  • Text
  • PDF
Abstract

BACKGROUND. Crohn’s disease (CD) is highly heterogeneous, due in large part to variability in cellular processes that underlie the natural history of CD, thereby confounding effective therapy. There is a critical need to advance understanding of the cellular mechanisms that drive CD heterogeneity. METHODS. We performed small RNA sequencing of adult colon tissue from CD and NIBD controls. Colonic epithelial cells and immune cells were isolated from colonic tissues, and microRNA-31 (miR-31) expression was measured. miR-31 expression was measured in colonoid cultures generated from controls and patients with CD. We performed small RNA-sequencing of formalin-fixed paraffin-embedded colon and ileum biopsies from treatment-naive pediatric patients with CD and controls and collected data on disease features and outcomes. RESULTS. Small RNA-sequencing and microRNA profiling in the colon revealed 2 distinct molecular subtypes, each with different clinical associations. Notably, we found that miR-31 expression was a driver of these 2 subtypes and, further, that miR-31 expression was particularly pronounced in epithelial cells. Colonoids revealed that miR-31 expression differences are preserved in this ex vivo system. In adult patients, low colonic miR-31 expression levels at the time of surgery were associated with worse disease outcome as measured by need for an end ileostomy and recurrence of disease in the neoterminal ileum. In pediatric patients, lower miR-31 expression at the time of diagnosis was associated with future development of fibrostenotic ileal CD requiring surgery CONCLUSIONS. These findings represent an important step forward in designing more effective clinical trials and developing personalized CD therapies. FUNDING. This work was supported by CCF Career Development Award (SZS), R01-ES024983 from NIEHS (SZS and TSF), 1R01DK104828-01A1 from NIDDK (SZS and TSF), P01-DK094779-01A1 from NIDDK (SZS), P30-DK034987 from NIDDK (SZS), 1-16-ACE-47 ADA Pathway Award (PS), UNC Nutrition Obesity Research Center Pilot & Feasibility Grant P30DK056350 (PS), CCF PRO-KIIDS NETWORK (SZS and PS), UNC CGIBD T32 Training Grant from NIDDK (JBB), T32 Training Grant (5T32GM007092-42) from NIGMS (MH), and SHARE from the Helmsley Trust (SZS). The UNC Translational Pathology Laboratory is supported, in part, by grants from the National Cancer Institute (3P30CA016086) and the UNC University Cancer Research Fund (UCRF) (PS).

Authors

Benjamin P. Keith, Jasmine B. Barrow, Takahiko Toyonaga, Nevzat Kazgan, Michelle Hoffner O’Connor, Neil D. Shah, Matthew S. Schaner, Elisabeth A. Wolber, Omar K. Trad, Greg R. Gipson, Wendy A. Pitman, Matthew Kanke, Shruti J. Saxena, Nicole Chaumont, Timothy S. Sadiq, Mark J. Koruda, Paul A. Cotney, Nancy Allbritton, Dimitri G. Trembath, Francisco Sylvester, Terrence S. Furey, Praveen Sethupathy, Shehzad Z. Sheikh

×

Usage data is cumulative from June 2022 through June 2023.

Usage JCI PMC
Text version 1,267 166
PDF 64 30
Figure 124 1
Table 62 0
Supplemental data 61 15
Citation downloads 34 0
Totals 1,612 212
Total Views 1,824
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts