Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Targeting the CALR interactome in myeloproliferative neoplasms
Elodie Pronier, Paolo Cifani, Tiffany R. Merlinsky, Katharine Barr Berman, Amritha Varshini Hanasoge Somasundara, Raajit K. Rampal, John LaCava, Karen E. Wei, Friederike Pastore, Jesper L.V. Maag, Jane Park, Richard Koche, Alex Kentsis, Ross L. Levine
Elodie Pronier, Paolo Cifani, Tiffany R. Merlinsky, Katharine Barr Berman, Amritha Varshini Hanasoge Somasundara, Raajit K. Rampal, John LaCava, Karen E. Wei, Friederike Pastore, Jesper L.V. Maag, Jane Park, Richard Koche, Alex Kentsis, Ross L. Levine
View: Text | PDF
Research Article Hematology Oncology

Targeting the CALR interactome in myeloproliferative neoplasms

  • Text
  • PDF
Abstract

Mutations in the ER chaperone calreticulin (CALR) are common in myeloproliferative neoplasm (MPN) patients, activate the thrombopoietin receptor (MPL), and mediate constitutive JAK/STAT signaling. The mechanisms by which CALR mutations cause myeloid transformation are incompletely defined. We used mass spectrometry proteomics to identify CALR-mutant interacting proteins. Mutant CALR caused mislocalization of binding partners and increased recruitment of FLI1, ERP57, and CALR to the MPL promoter to enhance transcription. Consistent with a critical role for CALR-mediated JAK/STAT activation, we confirmed the efficacy of JAK2 inhibition on CALR-mutant cells in vitro and in vivo. Due to the altered interactome induced by CALR mutations, we hypothesized that CALR-mutant MPNs may be vulnerable to disruption of aberrant CALR protein complexes. A synthetic peptide designed to competitively inhibit the carboxy terminal of CALR specifically abrogated MPL/JAK/STAT signaling in cell lines and primary samples and improved the efficacy of JAK kinase inhibitors. These findings reveal what to our knowledge is a novel potential therapeutic approach for patients with CALR-mutant MPN.

Authors

Elodie Pronier, Paolo Cifani, Tiffany R. Merlinsky, Katharine Barr Berman, Amritha Varshini Hanasoge Somasundara, Raajit K. Rampal, John LaCava, Karen E. Wei, Friederike Pastore, Jesper L.V. Maag, Jane Park, Richard Koche, Alex Kentsis, Ross L. Levine

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts