Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
CAMKII as a therapeutic target for growth factor–induced retinal and choroidal neovascularization
Sadaf Ashraf, Samuel Bell, Caitriona O’Leary, Paul Canning, Ileana Micu, Jose A. Fernandez, Michael O’Hare, Peter Barabas, Hannah McCauley, Derek P. Brazil, Alan W. Stitt, J. Graham McGeown, Tim M. Curtis
Sadaf Ashraf, Samuel Bell, Caitriona O’Leary, Paul Canning, Ileana Micu, Jose A. Fernandez, Michael O’Hare, Peter Barabas, Hannah McCauley, Derek P. Brazil, Alan W. Stitt, J. Graham McGeown, Tim M. Curtis
View: Text | PDF
Research Article Angiogenesis Ophthalmology

CAMKII as a therapeutic target for growth factor–induced retinal and choroidal neovascularization

  • Text
  • PDF
Abstract

While anti-VEGF drugs are commonly used to inhibit pathological retinal and choroidal neovascularization, not all patients respond in an optimal manner. Mechanisms underpinning resistance to anti‑VEGF therapy include the upregulation of other proangiogenic factors. Therefore, therapeutic strategies that simultaneously target multiple growth factor signaling pathways would have significant value. Here, we show that Ca2+/calmodulin-dependent kinase II (CAMKII) mediates the angiogenic actions of a range of growth factors in human retinal endothelial cells and that this kinase acts as a key nodal point for the activation of several signal transduction cascades that are known to play a critical role in growth factor–induced angiogenesis. We also demonstrate that endothelial CAMKIIγ and -δ isoforms differentially regulate the angiogenic effects of different growth factors and that genetic deletion of these isoforms suppresses pathological retinal and choroidal neovascularization in vivo. Our studies suggest that CAMKII could provide a novel and efficacious target to inhibit multiple angiogenic signaling pathways for the treatment of vasoproliferative diseases of the eye. CAMKIIγ represents a particularly promising target, as deletion of this isoform inhibited pathological neovascularization, while enhancing reparative angiogenesis in the ischemic retina.

Authors

Sadaf Ashraf, Samuel Bell, Caitriona O’Leary, Paul Canning, Ileana Micu, Jose A. Fernandez, Michael O’Hare, Peter Barabas, Hannah McCauley, Derek P. Brazil, Alan W. Stitt, J. Graham McGeown, Tim M. Curtis

×

Figure 4

Pharmacological blockade of Ca2+/calmodulin-dependent kinase II (CAMKII) suppresses pathological angiogenesis in the ischemic retina.

Options: View larger image (or click on image) Download as PowerPoint
Pharmacological blockade of Ca2+/calmodulin-dependent kinase II (CAMKII)...
The murine oxygen-induced retinopathy (OIR) model was used to explore the role of CAMKII in retinal neovascularization in vivo. (A) Top panels, typical images of P17 flat-mounted retinas following OIR in a control (no drug) animal and mice intravitreally injected at P15 with KN92 (negative control for KN93), KN93, and CK59 (CAMKII inhibitors). Lectin staining (green) identifies the retinal vasculature. Red (solid) and yellow (dashed) lines demarcate total retinal areas and avascular areas, respectively, as defined using OIR Select software. Scale bar: 1.0 mm. Lower panels, higher-magnification images of selected areas of the flatmount preparations highlighting the differences in neovascular tuft formation among the treatment groups. Scale bar: 200 μm. (B) Box-and-whisker plots (min, max, 25th–75th percentile, median) of the neovascular, avascular, and normal vascular areas for the different groups expressed as a percentage of the total retinal area. *P < 0.05, ***P < 0.001 based on ANOVA; n = 10 mice per group.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts