The physiological process of defecation is directly controlled by colorectal motility. The transient receptor potential ankyrin 1 (TRPA1) channel is expressed in small intestine enterochromaffin cells and is involved in gastrointestinal motility via serotonin release. In the colorectum, however, enterochromaffin cell localization is largely distinct from that in the small intestine. Here, we investigated the role of lower gastrointestinal tract TRPA1 in modulating colorectal motility. We found that in colonic tissue, TRPA1 is predominantly expressed in mesenchymal cells of the lamina propria, which are clearly distinct from those in the small intestine. These cells coexpressed COX1 and microsomal prostaglandin E synthase-1. Intracolonic administration of TRPA1 agonists induced colonic contraction, which was suppressed by a prostaglandin E2 (PGE2) receptor 1 antagonist. TRPA1 activation induced calcium influx and PGE2 release from cultured human fibroblastic cells. In dextran sulfate sodium–treated animals, both TRPA1 and its endogenous agonist were dramatically increased in the colonic lamina propria, accompanied by abnormal colorectal contractions. Abnormal colorectal contractions were significantly prevented by pharmacological and genetic inhibition of TRPA1. In conclusion, in the lower gastrointestinal tract, mesenchymal TRPA1 activation results in PGE2 release and consequently promotes colorectal contraction, representing what we believe is a novel physiological and inflammatory bowel disease–associated mechanism of gastrointestinal motility.
Yanjing Yang, Shenglan Wang, Kimiko Kobayashi, Yongbiao Hao, Hirosato Kanda, Takashi Kondo, Yoko Kogure, Hiroki Yamanaka, Satoshi Yamamoto, Junxiang Li, Hiroto Miwa, Koichi Noguchi, Yi Dai
Abnormal colorectal contraction in DSS-treated animals is alleviated by TRPA1 inhibition.