Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Molecular mechanisms of IL-33–mediated stromal interactions in cancer metastasis
Patrik Andersson, Yunlong Yang, Kayoko Hosaka, Yin Zhang, Carina Fischer, Harald Braun, Shuzhen Liu, Guohua Yu, Shihai Liu, Rudi Beyaert, Mayland Chang, Qi Li, Yihai Cao
Patrik Andersson, Yunlong Yang, Kayoko Hosaka, Yin Zhang, Carina Fischer, Harald Braun, Shuzhen Liu, Guohua Yu, Shihai Liu, Rudi Beyaert, Mayland Chang, Qi Li, Yihai Cao
View: Text | PDF
Research Article Cell biology Oncology

Molecular mechanisms of IL-33–mediated stromal interactions in cancer metastasis

  • Text
  • PDF
Abstract

Molecular mechanisms underlying the cancer stroma in metastasis need further exploration. Here, we discovered that cancer-associated fibroblasts (CAFs) produced high levels of IL-33 that acted on tumor-associated macrophages (TAMs), causing them to undergo the M1 to M2 transition. Genomic profiling of metastasis-related genes in the IL-33–stimulated TAMs showed a >200-fold increase of MMP9. Signaling analysis demonstrated the IL-33-ST2-NF-κB-MMP9-laminin pathway that governed tumor stroma–mediated metastasis. In mouse and human fibroblast-rich pancreatic cancers, genetic deletion of IL-33, ST2, or MMP9 markedly blocked metastasis. Pharmacological inhibition of NF-κB and MMP9 also blocked cancer metastasis. Deletion of IL-33, ST2, or MMP9 restored laminin, a key basement membrane component associated with tumor microvessels. Together, our data provide mechanistic insights on the IL-33-NF-κB-MMP9-laminin axis that mediates the CAF-TAM–committed cancer metastasis. Thus, targeting the CAF-TAM-vessel axis provides an outstanding therapeutic opportunity for cancer treatment.

Authors

Patrik Andersson, Yunlong Yang, Kayoko Hosaka, Yin Zhang, Carina Fischer, Harald Braun, Shuzhen Liu, Guohua Yu, Shihai Liu, Rudi Beyaert, Mayland Chang, Qi Li, Yihai Cao

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 829 151
PDF 88 29
Figure 403 7
Supplemental data 46 7
Citation downloads 110 0
Totals 1,476 194
Total Views 1,670
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts