Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Coordination of ENT2-dependent adenosine transport and signaling dampens mucosal inflammation
Carol M. Aherne, Colm B. Collins, Caroline R. Rapp, Kristine E. Olli, Loni Perrenoud, Paul Jedlicka, Jessica L. Bowser, Tingting W. Mills, Harry Karmouty-Quintana, Michael R. Blackburn, Holger K. Eltzschig
Carol M. Aherne, Colm B. Collins, Caroline R. Rapp, Kristine E. Olli, Loni Perrenoud, Paul Jedlicka, Jessica L. Bowser, Tingting W. Mills, Harry Karmouty-Quintana, Michael R. Blackburn, Holger K. Eltzschig
View: Text | PDF
Research Article Gastroenterology

Coordination of ENT2-dependent adenosine transport and signaling dampens mucosal inflammation

  • Text
  • PDF
Abstract

Intestinal epithelial barrier repair is vital for remission in inflammatory bowel disease (IBD). Extracellular adenosine signaling has been implicated in promoting restoration of epithelial barrier function. Currently, no clinically approved agents target this pathway. Adenosine signaling is terminated by uptake from the extracellular space via equilibrative nucleoside transporters (ENTs). We hypothesized that ENT inhibition could dampen intestinal inflammation. Initial studies demonstrated transcriptional repression of ENT1 and ENT2 in IBD biopsies or in murine IBD models. Subsequent studies in mice with global Ent1 or Ent2 deletion revealed selective protection of Ent2–/– mice. Elevated intestinal adenosine levels in conjunction with abolished protection following pharmacologic blockade of A2B adenosine receptors implicate adenosine signaling as the mechanism of gut protection in Ent2–/– mice. Additional studies in mice with tissue-specific deletion of Ent2 uncovered epithelial Ent2 as the target. Moreover, intestinal protection provided by a selective Ent2 inhibitor was abolished in mice with epithelium-specific deletion of Ent2 or the A2B adenosine receptor. Taken together, these findings indicate that increased mucosal A2B signaling following repression or deletion of epithelial Ent2 coordinates the resolution of intestinal inflammation. This study suggests the presence of a targetable purinergic network within the intestinal epithelium designed to limit tissue inflammation.

Authors

Carol M. Aherne, Colm B. Collins, Caroline R. Rapp, Kristine E. Olli, Loni Perrenoud, Paul Jedlicka, Jessica L. Bowser, Tingting W. Mills, Harry Karmouty-Quintana, Michael R. Blackburn, Holger K. Eltzschig

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,242 143
PDF 85 20
Figure 456 10
Supplemental data 35 3
Citation downloads 119 0
Totals 1,937 176
Total Views 2,113
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts