Chimeric antigen receptors (CARs) have an antigen-binding domain fused to transmembrane, costimulatory, and CD3ζ domains. Two CARs with regulatory approval include a CD28 or 4-1BB costimulatory domain. While both CARs achieve similar clinical outcomes, biologic differences have become apparent but not completely understood. Therefore, in this study we aimed to identify mechanistic differences between 4-1BB and CD28 costimulation that contribute to the biologic differences between the 2 CARs and could be exploited to enhance CAR T cell function. Using CD19-targeted CAR T cells with 4-1BB we determined that enhancement of T cell function is driven by NF-κB. Comparison to CAR T cells with CD28 also revealed that 4-1BB is associated with more antiapoptotic proteins and dependence on persistence for B cell killing. While TNF receptor–associated factor 2 (TRAF2) has been presupposed to be required for 4-1BB costimulation in CAR T cells, we determined that TRAF1 and TRAF3 are also critical. We observed that TRAFs impacted CAR T viability and proliferation, as well as cytotoxicity and/or cytokines, in part by regulating NF-κB. Our study demonstrates how 4-1BB costimulation in CAR T cells impacts antitumor eradication and clinical outcomes and has implications for enhanced CAR design.
Gongbo Li, Justin C. Boucher, Hiroshi Kotani, Kyungho Park, Yongliang Zhang, Bishwas Shrestha, Xuefeng Wang, Lawrence Guan, Nolan Beatty, Daniel Abate-Daga, Marco L. Davila
TRAF2 overexpression modulates 4-1BB–based human CAR T function.