Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Concurrent cell type–specific isolation and profiling of mouse brains in inflammation and Alzheimer’s disease
Dan B. Swartzlander, … , Baiping Wang, Hui Zheng
Dan B. Swartzlander, … , Baiping Wang, Hui Zheng
Published July 12, 2018
Citation Information: JCI Insight. 2018;3(13):e121109. https://doi.org/10.1172/jci.insight.121109.
View: Text | PDF
Resource and Technical Advance Inflammation Neuroscience Article has an altmetric score of 11

Concurrent cell type–specific isolation and profiling of mouse brains in inflammation and Alzheimer’s disease

  • Text
  • PDF
Abstract

Nonneuronal cell types in the CNS are increasingly implicated as critical players in brain health and disease. While gene expression profiling of bulk brain tissue is routinely used to examine alterations in the brain under various conditions, it does not capture changes that occur within single cell types or allow interrogation of crosstalk among cell types. To this end, we have developed a concurrent brain cell type acquisition (CoBrA) methodology, enabling the isolation and profiling of microglia, astrocytes, endothelia, and oligodendrocytes from a single adult mouse forebrain. By identifying and validating anti-ACSA-2 and anti-CD49a antibodies as cell surface markers for astrocytes and vascular endothelial cells, respectively, and using established antibodies to isolate microglia and oligodendrocytes, we document that these 4 major cell types are isolated with high purity and RNA quality. We validated our procedure by performing acute peripheral LPS challenge, while highlighting the underappreciated changes occurring in astrocytes and vascular endothelia in addition to microglia. Furthermore, we assessed cell type–specific gene expression changes in response to amyloid pathology in a mouse model of Alzheimer’s disease. Our CoBrA methodology can be readily implemented to interrogate multiple CNS cell types in any mouse model at any age.

Authors

Dan B. Swartzlander, Nicholas E. Propson, Ethan R. Roy, Takashi Saito, Takaomi Saido, Baiping Wang, Hui Zheng

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 936 186
PDF 98 44
Figure 296 11
Table 84 0
Supplemental data 114 6
Citation downloads 78 0
Totals 1,606 247
Total Views 1,853
Created with Highcharts 3.0.9MonthTotalAug 24Sep 24Oct 24Nov 24Dec 24Jan 25Feb 25Mar 25Apr 25May 25Jun 25Jul 25Aug 250500100015002000
JCI Citation downloads
JCI Figure
JCI Text version
JCI PDF
JCI Supplemental data
JCI Table
PMC Figure
PMC Text version
PMC PDF
Total JCI usage
Total PMC usage
Total usage
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts

Picked up by 1 news outlets
Posted by 4 X users
123 readers on Mendeley
See more details