Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Germline SAMD9 and SAMD9L mutations are associated with extensive genetic evolution and diverse hematologic outcomes
Jasmine C. Wong, … , Kevin Shannon, Jeffery M. Klco
Jasmine C. Wong, … , Kevin Shannon, Jeffery M. Klco
Published July 25, 2018
Citation Information: JCI Insight. 2018;3(14):e121086. https://doi.org/10.1172/jci.insight.121086.
View: Text | PDF
Research Article Hematology

Germline SAMD9 and SAMD9L mutations are associated with extensive genetic evolution and diverse hematologic outcomes

  • Text
  • PDF
Abstract

Germline SAMD9 and SAMD9L mutations cause a spectrum of multisystem disorders that carry a markedly increased risk of developing myeloid malignancies with somatic monosomy 7. Here, we describe 16 siblings, the majority of which were phenotypically normal, from 5 families diagnosed with myelodysplasia and leukemia syndrome with monosomy 7 (MLSM7; OMIM 252270) who primarily had onset of hematologic abnormalities during the first decade of life. Molecular analyses uncovered germline SAMD9L (n = 4) or SAMD9 (n = 1) mutations in these families. Affected individuals had a highly variable clinical course that ranged from mild and transient dyspoietic changes in the bone marrow to a rapid progression of myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) with monosomy 7. Expression of these gain-of-function SAMD9 and SAMD9L mutations reduces cell cycle progression, and deep sequencing demonstrated selective pressure favoring the outgrowth of clones that have either lost the mutant allele or acquired revertant mutations. The myeloid malignancies of affected siblings acquired cooperating mutations in genes that are also altered in sporadic cases of AML characterized by monosomy 7. These data have implications for understanding how SAMD9 and SAMD9L mutations contribute to myeloid transformation and for recognizing, counseling, and treating affected families.

Authors

Jasmine C. Wong, Victoria Bryant, Tamara Lamprecht, Jing Ma, Michael Walsh, Jason Schwartz, Maria del pilar Alzamora, Charles G. Mullighan, Mignon L. Loh, Raul Ribeiro, James R. Downing, William L. Carroll, Jeffrey Davis, Stuart Gold, Paul C. Rogers, Sara Israels, Rochelle Yanofsky, Kevin Shannon, Jeffery M. Klco

×
Options: View larger image (or click on image) Download as PowerPoint

SAMD9 and SAMD9L mutations in 5 MLSM7 families

SAMD9 and SAMD9L mutations in 5 MLSM7 families


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts