We hypothesized that the gut microbiota influences survival of murine cardiac allografts through modulation of immunity. Antibiotic pretreated mice received vascularized cardiac allografts and fecal microbiota transfer (FMT), along with tacrolimus immunosuppression. FMT source samples were from normal, pregnant (immune suppressed), or spontaneously colitic (inflammation) mice. Bifidobacterium pseudolongum (B. pseudolongum) in pregnant FMT recipients was associated with prolonged allograft survival and lower inflammation and fibrosis, while normal or colitic FMT resulted in inferior survival and worse histology. Transfer of B. pseudolongum alone resulted in reduced inflammation and fibrosis. Stimulation of DC and macrophage lines with B. pseudolongum induced the antiinflammatory cytokine IL-10 and homeostatic chemokine CCL19 but induced lesser amounts of the proinflammatory cytokines TNFα and IL-6. In contrast, LPS and Desulfovibrio desulfuricans (D. desulfuricans), more abundant in colitic FMT, induced a more inflammatory cytokine response. Analysis of mesenteric and peripheral lymph node structure showed that B. pseudolongum gavage resulted in a higher laminin α4/α5 ratio in the lymph node cortical ridge, indicative of a suppressive environment, while D. desulfuricans resulted in a lower laminin α4/α5 ratio, supportive of inflammation. Discrete gut bacterial species alter immunity and may predict graft outcomes through stimulation of myeloid cells and shifts in lymph node structure and permissiveness.
Jonathan S. Bromberg, Lauren Hittle, Yanbao Xiong, Vikas Saxena, Eoghan M. Smyth, Lushen Li, Tianshu Zhang, Chelsea Wagner, W. Florian Fricke, Thomas Simon, Colin C. Brinkman, Emmanuel F. Mongodin
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 997 | 173 |
89 | 55 | |
Figure | 223 | 9 |
Supplemental data | 44 | 5 |
Citation downloads | 64 | 0 |
Totals | 1,417 | 242 |
Total Views | 1,659 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.