Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Elevated hepatic expression of H19 long noncoding RNA contributes to diabetic hyperglycemia
Na Zhang, Tingting Geng, Zhangsheng Wang, Ruling Zhang, Tiefeng Cao, Joao Paulo Camporez, Shi-Ying Cai, Ya Liu, Luisa Dandolo, Gerald I. Shulman, Gordon G. Carmichael, Hugh S. Taylor, Yingqun Huang
Na Zhang, Tingting Geng, Zhangsheng Wang, Ruling Zhang, Tiefeng Cao, Joao Paulo Camporez, Shi-Ying Cai, Ya Liu, Luisa Dandolo, Gerald I. Shulman, Gordon G. Carmichael, Hugh S. Taylor, Yingqun Huang
View: Text | PDF
Research Article Endocrinology Metabolism

Elevated hepatic expression of H19 long noncoding RNA contributes to diabetic hyperglycemia

  • Text
  • PDF
Abstract

Excessive hepatic glucose production (HGP) contributes significantly to the hyperglycemia of type 2 diabetes; however, the molecular mechanism underlying this dysregulation remains poorly understood. Here, we show that fasting temporally increases the expression of H19 long noncoding RNA (lncRNA) in nondiabetic mouse liver, whereas its level is chronically elevated in diet-induced diabetic mice, consistent with the previously reported chronic hepatic H19 increase in diabetic patients. Importantly, liver-specific H19 overexpression promotes HGP, hyperglycemia, and insulin resistance, while H19 depletion enhances insulin-dependent suppression of HGP. Using genome-wide methylation and transcriptome analyses, we demonstrate that H19 knockdown in hepatic cells alters promoter methylation and expression of Hnf4a, a master gluconeogenic transcription factor, and that this regulation is recapitulated in vivo. Our findings offer a mechanistic explanation of lncRNA H19’s role in the pathogenesis of diabetic hyperglycemia and suggest that targeting hepatic H19 may hold the potential of new treatment for this disease.

Authors

Na Zhang, Tingting Geng, Zhangsheng Wang, Ruling Zhang, Tiefeng Cao, Joao Paulo Camporez, Shi-Ying Cai, Ya Liu, Luisa Dandolo, Gerald I. Shulman, Gordon G. Carmichael, Hugh S. Taylor, Yingqun Huang

×

Figure 2

Hyperinsulinemic/euglycemic clamp studies of WT and KO mice.

Options: View larger image (or click on image) Download as PowerPoint
Hyperinsulinemic/euglycemic clamp studies of WT and KO mice.
Compared wi...
Compared with the WT mice, the KO mice showed an increased glucose infusion rate (A), unchanged whole-body glucose uptake (B), unchanged basal EGP (C), and increased insulin-stimulated EGP suppression (D). Western blots and corresponding densitometry show decreased gluconeogenic gene expression in KO versus WT mouse livers (E). n = 5–7 mice per genotype. Quantification is based on 3 independent experiments. Numbers are the mean ± SEM. *P < 0.05 based on Student t test.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts