Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock
Carrie A. Sims, Yuxia Guan, Sarmistha Mukherjee, Khushboo Singh, Paul Botolin, Antonio Davila Jr., Joseph A. Baur
Carrie A. Sims, Yuxia Guan, Sarmistha Mukherjee, Khushboo Singh, Paul Botolin, Antonio Davila Jr., Joseph A. Baur
View: Text | PDF
Research Article Inflammation Metabolism

Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock

  • Text
  • PDF
Abstract

Hemorrhagic shock depletes nicotinamide adenine dinucleotide (NAD) and causes metabolic derangements that, in severe cases, cannot be overcome, even after restoration of blood volume and pressure. However, current strategies to treat acute blood loss do not target cellular metabolism. We hypothesized that supplemental nicotinamide mononucleotide (NMN), the immediate biosynthetic precursor to NAD, would support cellular energetics and enhance physiologic resilience to hemorrhagic shock. In a rodent model of decompensated hemorrhagic shock, rats receiving NMN displayed significantly reduced lactic acidosis and serum IL-6 levels, two strong predictors of mortality in human patients. In both livers and kidneys, NMN increased NAD levels and prevented mitochondrial dysfunction. Moreover, NMN preserved mitochondrial function in isolated hepatocytes cocultured with proinflammatory cytokines, indicating a cell-autonomous protective effect that is independent from the reduction in circulating IL-6. In kidneys, but not in livers, NMN was sufficient to prevent ATP loss following shock and resuscitation. Overall, NMN increased the time animals could sustain severe shock before requiring resuscitation by nearly 25% and significantly improved survival after resuscitation (P = 0.018), whether NMN was given as a pretreatment or only as an adjunct during resuscitation. Thus, we demonstrate that NMN substantially mitigates inflammation, improves cellular metabolism, and promotes survival following hemorrhagic shock.

Authors

Carrie A. Sims, Yuxia Guan, Sarmistha Mukherjee, Khushboo Singh, Paul Botolin, Antonio Davila Jr., Joseph A. Baur

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts