Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
γδ T cells: an immunotherapeutic approach for HIV cure strategies
Carolina Garrido, … , David M. Margolis, Natalia Soriano-Sarabia
Carolina Garrido, … , David M. Margolis, Natalia Soriano-Sarabia
Published June 21, 2018
Citation Information: JCI Insight. 2018;3(12):e120121. https://doi.org/10.1172/jci.insight.120121.
View: Text | PDF
Research Article AIDS/HIV

γδ T cells: an immunotherapeutic approach for HIV cure strategies

  • Text
  • PDF
Abstract

Current strategies aimed to cure HIV infection are based on combined efforts to reactivate the virus from latency and improve immune effector cell function to clear infected cells. These strategies are primarily focused on CD8+ T cells and approaches are challenging due to insufficient HIV antigen production from infected cells and poor HIV-specific CD8+ T cells. γδ T cells represent a unique subset of effector T cells that can traffic to tissues, and selectively target cancer or virally infected cells without requiring MHC presentation. We analyzed whether γδ T cells represent a complementary/alternative immunotherapeutic approach towards HIV cure strategies. γδ T cells from HIV-infected virologically suppressed donors were expanded with bisphosphonate pamidronate (PAM) and cells were used in autologous cellular systems ex vivo. These cells (a) are potent cytotoxic effectors able to efficiently inhibit HIV replication ex vivo, (b) degranulate in the presence of autologous infected CD4+ T cells, and (c) specifically clear latently infected cells after latency reversal with vorinostat. This is the first proof of concept to our knowledge showing that γδ T cells target and clear autologous HIV reservoirs upon latency reversal. Our results open potentially new insights into the immunotherapeutic use of γδ T cells for current interventions in HIV eradication strategies.

Authors

Carolina Garrido, Matthew L. Clohosey, Chloe P. Whitworth, Michael Hudgens, David M. Margolis, Natalia Soriano-Sarabia

×

Figure 3

Phenotype of pamidronate-expanded Vδ2 cells in ART-suppressed HIV-infected donors.

Options: View larger image (or click on image) Download as PowerPoint
Phenotype of pamidronate-expanded Vδ2 cells in ART-suppressed HIV-infect...
Phenotype of Vδ2 cells was analyzed by flow cytometry in 8 HIV-infected individuals after expansion. Mean ± SEM is represented. (A) Memory populations defined as central memory (TCM: CD45–CD27+CCR7+), transitional memory (TTM: CD45–CD27+CCR7–), or effector memory (TEM: CD45–CD27–CCR7–). (B) Expression of cytotoxic markers CD8, CD56, and CD16. (C) Expression of activation markers CD69, CD25, and HLA-DR, and exhaustion markers PD-1 and CTLA-4.

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts