Arroyo et al. report that kidney epithelial cells make biologically active vasopressin in response to NaCl-induced hypertonic stress. The cover image shows preprovasopressin (white) in the collecting ducts (red) but not in the proximal tubules (green) in human kidney tissue.
Primary atopic disorders are a group of inborn errors of immunity that skew the immune system toward severe allergic disease. Defining the biology underlying these extreme monogenic phenotypes reveals shared mechanisms underlying common polygenic allergic disease and identifies potential drug targets. Germline gain-of-function (GOF) variants in JAK1 are a cause of severe atopy and eosinophilia. Modeling the JAK1GOF (p.A634D) variant in both zebrafish and human induced pluripotent stem cells (iPSCs) revealed enhanced myelopoiesis. RNA-Seq of JAK1GOF human whole blood, iPSCs, and transgenic zebrafish revealed a shared core set of dysregulated genes involved in IL-4, IL-13, and IFN signaling. Immunophenotypic and transcriptomic analysis of patients carrying a JAK1GOF variant revealed marked Th cell skewing. Moreover, long-term ruxolitinib treatment of 2 children carrying the JAK1GOF (p.A634D) variant remarkably improved their growth, eosinophilia, and clinical features of allergic inflammation. This work highlights the role of JAK1 signaling in atopic immune dysregulation and the clinical impact of JAK1/2 inhibition in treating eosinophilic and allergic disease.
Catherine M. Biggs, Anna Cordeiro-Santanach, Sergey V. Prykhozhij, Adam P. Deveau, Yi Lin, Kate L. Del Bel, Felix Orben, Robert J. Ragotte, Aabida Saferali, Sara Mostafavi, Louie Dinh, Darlene Dai, Katja G. Weinacht, Kerry Dobbs, Lisa Ott de Bruin, Mehul Sharma, Kevin Tsai, John J. Priatel, Richard A. Schreiber, Jacob Rozmus, Martin C.K. Hosking, Kevin E. Shopsowitz, Margaret L. McKinnon, Suzanne Vercauteren, Michael Seear, Luigi D. Notarangelo, Francis C. Lynn, Jason N. Berman, Stuart E. Turvey
Antisense oligonucleotides (ASOs) have emerged as one of the most innovative new genetic drug modalities. However, their high molecular weight limits their bioavailability for otherwise-treatable neurological disorders. We investigated conjugation of ASOs to an antibody against the murine transferrin receptor, 8D3130, and evaluated it via systemic administration in mouse models of the neurodegenerative disease spinal muscular atrophy (SMA). SMA, like several other neurological and neuromuscular diseases, is treatable with single-stranded ASOs that modulate splicing of the survival motor neuron 2 (SMN2) gene. Administration of 8D3130-ASO conjugate resulted in elevated levels of bioavailability to the brain. Additionally, 8D3130-ASO yielded therapeutic levels of SMN2 splicing in the central nervous system of adult human SMN2–transgenic (hSMN2-transgenic) mice, which resulted in extended survival of a severely affected SMA mouse model. Systemic delivery of nucleic acid therapies with brain-targeting antibodies offers powerful translational potential for future treatments of neuromuscular and neurodegenerative diseases.
Suzan M. Hammond, Frank Abendroth, Larissa Goli, Jessica Stoodley, Matthew Burrell, George Thom, Ian Gurrell, Nina Ahlskog, Michael J. Gait, Matthew J.A. Wood, Carl I. Webster
Muscle weakness and wasting are defining features of cancer-induced cachexia. Mitochondrial stress occurs before atrophy in certain muscles, but the possibility of heterogeneous responses between muscles and across time remains unclear. Using mice inoculated with Colon-26 cancer, we demonstrate that specific force production was reduced in quadriceps and diaphragm at 2 weeks in the absence of atrophy. At this time, pyruvate-supported mitochondrial respiration was lower in quadriceps while mitochondrial H2O2 emission was elevated in diaphragm. By 4 weeks, atrophy occurred in both muscles, but specific force production increased to control levels in quadriceps such that reductions in absolute force were due entirely to atrophy. Specific force production remained reduced in diaphragm. Mitochondrial respiration increased and H2O2 emission was unchanged in both muscles versus control while mitochondrial creatine sensitivity was reduced in quadriceps. These findings indicate muscle weakness precedes atrophy and is linked to heterogeneous mitochondrial alterations that could involve adaptive responses to metabolic stress. Eventual muscle-specific restorations in specific force and bioenergetics highlight how the effects of cancer on one muscle do not predict the response in another muscle. Exploring heterogeneous responses of muscle to cancer may reveal new mechanisms underlying distinct sensitivities, or resistance, to cancer cachexia.
Luca J. Delfinis, Catherine A. Bellissimo, Shivam Gandhi, Sara N. DiBenedetto, Madison C. Garibotti, Arshdeep K. Thuhan, Stavroula Tsitkanou, Megan E. Rosa-Caldwell, Fasih A. Rahman, Arthur J. Cheng, Michael P. Wiggs, Uwe Schlattner, Joe Quadrilatero, Nicholas P. Greene, Christopher G.R. Perry
Here, the efficacy of abatacept in patients with early diffuse systemic sclerosis (dcSSc) was analyzed to test the hypothesis that patients in the inflammatory intrinsic subset would show the most significant clinical improvement. Eighty-four participants with dcSSc were randomized to receive abatacept or placebo for 12 months. RNA-Seq was performed on 233 skin paired biopsies at baseline and at 3 and 6 months. Improvement was defined as a 5-point or more than 20% change in modified Rodnan skin score (mRSS) between baseline and 12 months. Samples were assigned to intrinsic gene expression subsets (inflammatory, fibroproliferative, or normal-like subsets). In the abatacept arm, change in mRSS was most pronounced for the inflammatory and normal-like subsets relative to the placebo subset. Gene expression for participants on placebo remained in the original molecular subset, whereas inflammatory participants treated with abatacept had gene expression that moved toward the normal-like subset. The Costimulation of the CD28 Family Reactome Pathway decreased in patients who improved on abatacept and was specific to the inflammatory subset. Patients in the inflammatory subset had elevation of the Costimulation of the CD28 Family pathway at baseline relative to that of participants in the fibroproliferative and normal-like subsets. There was a correlation between improved ΔmRSS and baseline expression of the Costimulation of the CD28 Family pathway. This study provides an example of precision medicine in systemic sclerosis clinical trials.
Bhaven K. Mehta, Monica E. Espinoza, Jennifer M. Franks, Yiwei Yuan, Yue Wang, Tammara Wood, Johann E. Gudjonsson, Cathie Spino, David A. Fox, Dinesh Khanna, Michael L. Whitfield
Metastatic clear cell renal cell carcinomas (ccRCCs) are resistant to DNA-damaging chemotherapies, limiting therapeutic options for patients whose tumors are resistant to tyrosine kinase inhibitors and/or immune checkpoint therapies. Here we show that mouse and human ccRCCs were frequently characterized by high levels of endogenous DNA damage and that cultured ccRCC cells exhibited intact cellular responses to chemotherapy-induced DNA damage. We identify that pharmacological inhibition of the DNA damage–sensing kinase ataxia telangiectasia and Rad3-related protein (ATR) with the orally administered, potent, and selective drug M4344 (gartisertib) induced antiproliferative effects in ccRCC cells. This effect was due to replication stress and accumulation of DNA damage in S phase. In some cells, DNA damage persisted into subsequent G2/M and G1 phases, leading to the frequent accumulation of micronuclei. Daily single-agent treatment with M4344 inhibited the growth of ccRCC xenograft tumors. M4344 synergized with chemotherapeutic drugs including cisplatin and carboplatin and the poly(ADP-ribose) polymerase inhibitor olaparib in mouse and human ccRCC cells. Weekly M4344 plus cisplatin treatment showed therapeutic synergy in ccRCC xenografts and was efficacious in an autochthonous mouse ccRCC model. These studies identify ATR inhibition as a potential novel therapeutic option for ccRCC.
Philipp Seidel, Anne Rubarth, Kyra Zodel, Asin Peighambari, Felix Neumann, Yannick Federkiel, Hsin Huang, Rouven Hoefflin, Mojca Adlesic, Christian Witt, David J. Hoffmann, Patrick Metzger, Ralph K. Lindemann, Frank T. Zenke, Christoph Schell, Melanie Boerries, Dominik von Elverfeldt, Wilfried Reichardt, Marie Follo, Joachim Albers, Ian J. Frew
Accumulating evidence suggests the pathogenic role of immunity and metabolism in diabetic kidney disease (DKD). Herein, we aimed to investigate the effect of complement factor B (CFB) on lipid metabolism in the development of DKD. We found that in patients with diabetic nephropathy, the staining of Bb, CFB, C3a, C5a, and C5b-9 was markedly elevated in renal tubulointerstitium. Cfb-knockout diabetic mice had substantially milder tubulointerstitial injury and less ceramide biosynthesis. The in vitro study demonstrated that cytokine secretion, endoplasmic reticulum stress, oxidative stress, and cell apoptosis were ameliorated in HK-2 cells transfected with siRNA of CFB under high-glucose conditions. Exogenous ceramide supplementation attenuated the protective effect of CFB knockdown in HK-2 cells, while inhibiting ceramide synthases (CERS) with fumonisin B1 in CFB-overexpressing cells rescued the cell injury. CFB knockdown could downregulate the expression of NF-κB p65, which initiates the transcription of CERS3. Furthermore, C3 knockdown abolished CFB-mediated cytokine secretion, NF-κB signaling activation, and subsequently ceramide biosynthesis. Thus, CFB deficiency inhibited activation of the complement alternative pathway and attenuated kidney damage in DKD, especially tubulointerstitial injury, by inhibiting the NF-κB signaling pathway, further blocking the transcription of CERS, which regulates the biosynthesis of ceramide. CFB may be a promising therapeutic target of DKD.
Zi-jun Sun, Dong-yuan Chang, Min Chen, Ming-hui Zhao
Acute lung injury (ALI) is a severe form of lung inflammation causing acute respiratory distress syndrome in patients. ALI pathogenesis is closely linked to uncontrolled alveolar inflammation. We hypothesize that specific enzymes of the glycolytic pathway could function as key regulators of alveolar inflammation. Therefore, we screened isolated alveolar epithelia from mice exposed to ALI induced by injurious ventilation to assess their metabolic responses. These studies pointed us toward a selective role for isoform 3 of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3). Pharmacologic inhibition or genetic deletion of Pfkfb3 in alveolar epithelia (Pfkfb3loxP/loxP SPC-ER-Cre+ mice) was associated with profound increases in ALI during injurious mechanical ventilation or acid instillation. Studies in genetic models linked Pfkfb3 expression and function to Hif1a. Not only did intratracheal pyruvate instillation reconstitute Pfkfb3loxP/loxP or Hif1aloxP/loxP SPC-ER-Cre+ mice, but pyruvate was also effective in ALI treatment of wild-type mice. Finally, proof-of-principle studies in human lung biopsies demonstrated increased PFKFB3 staining in injured lungs and colocalized PFKFB3 to alveolar epithelia. These studies reveal a specific role for PFKFB3 in counterbalancing alveolar inflammation and lay the groundwork for novel metabolic therapeutic approaches during ALI.
Christine U. Vohwinkel, Nana Burns, Ethan Coit, Xiaoyi Yuan, Eszter K. Vladar, Christina Sul, Eric P. Schmidt, Peter Carmeliet, Kurt Stenmark, Eva S. Nozik, Rubin M. Tuder, Holger K. Eltzschig
Mutations in the BRCA1 tumor suppressor gene, such as 5382insC (BRCA1insC), give carriers an increased risk for breast, ovarian, prostate, and pancreatic cancers. We have previously reported that, in mice, Brca1 deficiency in the hematopoietic system leads to pancytopenia and, as a result, early lethality. We explored the cellular consequences of Brca1-null and BRCA1insC alleles in combination with Trp53 deficiency in the murine hematopoietic system. We found that Brca1 and Trp53 codeficiency led to a highly penetrant erythroproliferative disorder that is characterized by hepatosplenomegaly and by expanded megakaryocyte erythroid progenitor (MEP) and immature erythroid blast populations. The expanded erythroid progenitor populations in both BM and spleen had the capacity to transmit the disease into secondary mouse recipients, suggesting that Brca1 and Trp53 codeficiency provides a murine model of hematopoietic neoplasia. This Brca1/Trp53 model replicated Poly (ADP-ribose) polymerase (PARP) inhibitor olaparib sensitivity seen in existing Brca1/Trp53 breast cancer models and had the benefits of monitoring disease progression and drug responses via peripheral blood analyses without sacrificing experimental animals. In addition, this erythroid neoplasia developed much faster than murine breast cancer, allowing for increased efficiency of future preclinical studies.
Gerardo Lopez-Perez, Ranjula Wijayatunge, Kelly B. McCrum, Sam R. Holmstrom, Victoria E. Mgbemena, Theodora S. Ross
Loss of olfactory function has been commonly reported in SARS-CoV-2 infections. Recovery from anosmia is not well understood. Previous studies showed that sustentacular cells, and occasionally olfactory sensory neurons (OSNs) in the olfactory epithelium (OE), are infected in SARS-CoV-2–infected patients and experimental animals. Here, we show that SARS-CoV-2 infection of sustentacular cells induces inflammation characterized by infiltration of myeloid cells to the olfactory epithelium and variably increased expression of proinflammatory cytokines. We observed widespread damage to, and loss of cilia on, OSNs, accompanied by downregulation of olfactory receptors and signal transduction molecules involved in olfaction. A consequence of OSN dysfunction was a reduction in the number of neurons in the olfactory bulb expressing tyrosine hydroxylase, consistent with reduced synaptic input. Resolution of the infection, inflammation, and olfactory dysfunction occurred over 3–4 weeks following infection in most but not all animals. We also observed similar patterns of OE infection and anosmia/hyposmia in mice infected with other human coronaviruses such as SARS-CoV and MERS-CoV. Together, these results define the downstream effects of sustentacular cell infection and provide insight into olfactory dysfunction in COVID-19–associated anosmia.
Abhishek Kumar Verma, Jian Zheng, David K. Meyerholz, Stanley Perlman
Vasopressin has traditionally been thought to be produced by the neurohypophyseal system and then released into the circulation where it regulates water homeostasis. The questions of whether vasopressin could be produced outside of the brain and if the kidney could be a source of vasopressin are raised by the syndrome of inappropriate antidiuretic hormone secretion (vasopressin). We found that mouse and human kidneys expressed vasopressin mRNA. Using an antibody that detects preprovasopressin, we found that immunoreactive preprovasopressin protein was found in mouse and human kidneys. Moreover, we found that murine collecting duct cells made biologically active vasopressin, which increased in response to NaCl-mediated hypertonicity, and that water restriction increased the abundance of kidney-derived vasopressin mRNA and protein expression in mouse kidneys. Thus, we provide evidence of biologically active production of kidney-derived vasopressin in kidney tubular epithelial cells.
Juan Pablo Arroyo, Andrew S. Terker, Yvonne Zuchowski, Jason A. Watts, Fabian Bock, Cameron Meyer, Wentian Luo, Meghan E. Kapp, Edward R. Gould, Adam X. Miranda, Joshua Carty, Ming Jiang, Roberto M. Vanacore, Elizabeth Hammock, Matthew H. Wilson, Roy Zent, Mingzhi Zhang, Gautam Bhave, Raymond C. Harris
Leukocyte adhesion deficiency type 1 (LAD-1) is a rare disease resulting from mutations in the gene encoding for the common β-chain of the β2-integrin family (CD18). The most prominent clinical symptoms are profound leukocytosis and high susceptibility to infections. Patients with LAD-1 are prone to develop autoimmune diseases, but the molecular and cellular mechanisms that result in coexisting immunodeficiency and autoimmunity are still unresolved. CD4+FOXP3+ Treg are known for their essential role in preventing autoimmunity. To understand the role of Treg in LAD-1 development and manifestation of autoimmunity, we generated mice specifically lacking CD18 on Treg (CD18Foxp3), resulting in defective LFA-1 expression. Here, we demonstrate a crucial role of LFA-1 on Treg to maintain immune homeostasis by modifying T cell–DC interactions and CD4+ T cell activation. Treg-specific CD18 deletion did not impair Treg migration into extralymphatic organs, but it resulted in shorter interactions of Treg with DC. In vivo, CD18Foxp3 mice developed spontaneous hyperplasia in lymphatic organs and diffuse inflammation of the skin and in multiple internal organs. Thus, LFA-1 on Treg is required for the maintenance of immune homeostasis.
Tanja Klaus, Alicia S. Wilson, Elisabeth Vicari, Eva Hadaschik, Matthias Klein, Sara Salome Clara Helbich, Nadine Kamenjarin, Katrin Hodapp, Jenny Schunke, Maximilian Haist, Florian Butsch, Hans Christian Probst, Alexander H. Enk, Karsten Mahnke, Ari Waisman, Monika Bednarczyk, Matthias Bros, Tobias Bopp, Stephan Grabbe
Despite the widespread use of SARS-CoV-2–specific monoclonal antibody (mAb) therapy for the treatment of acute COVID-19, the impact of this therapy on the development of SARS-CoV-2–specific T cell responses has been unknown, resulting in uncertainty as to whether anti–SARS-CoV-2 mAb administration may result in failure to generate immune memory. Alternatively, it has been suggested that SARS-CoV-2–specific mAb may enhance adaptive immunity to SARS-CoV-2 via a “vaccinal effect.” Bamlanivimab (Eli Lilly and Company) is a recombinant human IgG1 that was granted FDA emergency use authorization for the treatment of mild to moderate COVID-19 in those at high risk for progression to severe disease. Here, we compared SARS-CoV-2–specific CD4+ and CD8+ T cell responses of 95 individuals from the ACTIV-2/A5401 clinical trial 28 days after treatment with bamlanivimab versus placebo. SARS-CoV-2–specific T cell responses were evaluated using activation-induced marker assays in conjunction with intracellular cytokine staining. We demonstrate that most individuals with acute COVID-19 developed SARS-CoV-2–specific T cell responses. Overall, our findings suggest that the quantity and quality of SARS-CoV-2–specific T cell memory were not diminished in individuals who received bamlanivimab for acute COVID-19. Receipt of bamlanivimab during acute COVID-19 neither diminished nor enhanced SARS-CoV-2–specific cellular immunity.
Sydney I. Ramirez, Alba Grifoni, Daniela Weiskopf, Urvi M. Parikh, Amy Heaps, Farhoud Faraji, Scott F. Sieg, Justin Ritz, Carlee Moser, Joseph J. Eron, Judith S. Currier, Paul Klekotka, Alessandro Sette, David A. Wohl, Eric S. Daar, Michael D. Hughes, Kara W. Chew, Davey M. Smith, Shane Crotty, for the Accelerating COVID-19 Therapeutic Interventions and Vaccines–2/A5401 (ACTIV-2/A5401) Study Team
Clinical outcomes after lung transplantation, a life-saving therapy for patients with end-stage lung diseases, are limited by primary graft dysfunction (PGD). PGD is an early form of acute lung injury with no specific pharmacologic therapies. Here, we present a large multicenter study of plasma and bronchoalveolar lavage (BAL) samples collected on the first posttransplant day, a critical time for investigations of immune pathways related to PGD. We demonstrated that ligands for NKG2D receptors were increased in the BAL from participants who developed severe PGD and were associated with increased time to extubation, prolonged intensive care unit length of stay, and poor peak lung function. Neutrophil extracellular traps (NETs) were increased in PGD and correlated with BAL TNF-α and IFN-γ cytokines. Mechanistically, we found that airway epithelial cell NKG2D ligands were increased following hypoxic challenge. NK cell killing of hypoxic airway epithelial cells was abrogated with NKG2D receptor blockade, and TNF-α and IFN-γ provoked neutrophils to release NETs in culture. These data support an aberrant NK cell/neutrophil axis in human PGD pathogenesis. Early measurement of stress ligands and blockade of the NKG2D receptor hold promise for risk stratification and management of PGD.
Daniel R. Calabrese, Tasha Tsao, Mélia Magnen, Colin Valet, Ying Gao, Beñat Mallavia, Jennifer J. Tian, Emily A. Aminian, Kristin M. Wang, Avishai Shemesh, Elman B. Punzalan, Aartik Sarma, Carolyn S. Calfee, Stephanie A. Christenson, Charles R. Langelier, Steven R. Hays, Jeffrey A. Golden, Lorriana E. Leard, Mary Ellen Kleinhenz, Nicholas A. Kolaitis, Rupal Shah, Aida Venado, Lewis L. Lanier, John R. Greenland, David M. Sayah, Abbas Ardehali, Jasleen Kukreja, S. Samuel Weigt, John A. Belperio, Jonathan P. Singer, Mark R. Looney
Linda Tsan, Sandrine Chometton, Anna M.R. Hayes, Molly E. Klug, Yanning Zuo, Shan Sun, Lana Bridi, Rae Lan, Anthony A. Fodor, Emily E. Noble, Xia Yang, Scott E. Kanoski, Lindsey A. Schier