Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Issue published April 6, 2017

  • Volume 2, Issue 7
  • Previous Issue | Next Issue
Research Articles
Chemoattractant-mediated leukocyte trafficking enables HIV dissemination from the genital mucosa
Maud Deruaz, … , Thorsten R. Mempel, Andrew D. Luster
Maud Deruaz, … , Thorsten R. Mempel, Andrew D. Luster
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e88533. https://doi.org/10.1172/jci.insight.88533.
View: Text | PDF

Chemoattractant-mediated leukocyte trafficking enables HIV dissemination from the genital mucosa

  • Text
  • PDF
Abstract

HIV vaginal transmission accounts for the majority of newly acquired heterosexual infections. However, the mechanism by which HIV spreads from the initial site of viral entry at the mucosal surface of the female genital tract to establish a systemic infection of lymphoid and peripheral tissues is not known. Once the virus exits the mucosa it rapidly spreads to all tissues, leading to CD4+ T cell depletion and the establishment of a viral reservoir that cannot be eliminated with current treatments. Understanding the molecular and cellular requirements for viral dissemination from the genital tract is therefore of great importance, as it could reveal new strategies to lengthen the window of opportunity to target the virus at its entry site in the mucosa where it is the most vulnerable and thus prevent systemic infection. Using HIV vaginal infection of humanized mice as a model of heterosexual transmission, we demonstrate that blocking the ability of leukocytes to respond to chemoattractants prevented HIV from leaving the female genital tract. Furthermore, blocking lymphocyte egress from lymph nodes prevented viremia and infection of the gut. Leukocyte trafficking therefore plays a major role in viral dissemination, and targeting the chemoattractant molecules involved can prevent the establishment of a systemic infection.

Authors

Maud Deruaz, Thomas T. Murooka, Sophina Ji, Marc A. Gavin, Vladimir D. Vrbanac, Judy Lieberman, Andrew M. Tager, Thorsten R. Mempel, Andrew D. Luster

×

Circadian phase resetting by a single short-duration light exposure
Shadab A. Rahman, … , Steven W. Lockley, Elizabeth B. Klerman
Shadab A. Rahman, … , Steven W. Lockley, Elizabeth B. Klerman
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e89494. https://doi.org/10.1172/jci.insight.89494.
View: Text | PDF

Circadian phase resetting by a single short-duration light exposure

  • Text
  • PDF
Abstract

BACKGROUND. In humans, a single light exposure of 12 minutes and multiple-millisecond light exposures can shift the phase of the circadian pacemaker. We investigated the response of the human circadian pacemaker to a single 15-second or 2-minute light pulse administered during the biological night.

METHODS. Twenty-six healthy individuals participated in a 9-day inpatient protocol that included assessment of dim light melatonin onset time (DLMO time) before and after exposure to a single 15-second (n = 8) or 2-minute (n = 12) pulse of bright light (9,500 lux; 4,100 K fluorescent) or control background dim light (<3 lux; n = 6). Phase shifts were calculated as the difference in clock time between the two phase estimates.

RESULTS. Both 15-second and 2-minute exposures induced phase delay shifts [median (± SD)] of –34.8 ± 47.2 minutes and –45.4 ± 28.4 minutes, respectively, that were significantly (P = 0.04) greater than the control condition (advance shift: +22.3 ± 51.3 minutes) but were not significantly different from each other. Comparisons with historic data collected under the same conditions confirmed a nonlinear relationship between exposure duration and the magnitude of phase shift.

CONCLUSIONS. Our results underscore the exquisite sensitivity of the human pacemaker to even short-duration single exposures to light. These findings may have real-world implications for circadian disruption induced by exposure to brief light stimuli at night.

TRIAL REGISTRATION. The study was registered as a clinical trial on www.clinicaltrials.org, NCT #01330992.

FUNDING. Funding for this study was provided by NSBRI HFP02802 and NIH P01-AG09975, R01-HL114088 (EBK), RC2-HL101340-0 (EBK, SWL, SAR, REK), K02-HD045459 (EBK), K24-HL105664 (EBK), T32-HL07901 (MSH, SAR), HL094654 (CAC), and AG044416 (JFD). The project described was supported by NIH grant 1UL1 TR001102-01, 8UL1TR000170-05, UL1 RR 025758, Harvard Clinical and Translational Science Center, from the National Center for Advancing Translational Science.

Authors

Shadab A. Rahman, Melissa A. St. Hilaire, Anne-Marie Chang, Nayantara Santhi, Jeanne F. Duffy, Richard E. Kronauer, Charles A. Czeisler, Steven W. Lockley, Elizabeth B. Klerman

×

Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model
Muriel Sudres, … , Talma Brenner, Sonia Berrih-Aknin
Muriel Sudres, … , Talma Brenner, Sonia Berrih-Aknin
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e89665. https://doi.org/10.1172/jci.insight.89665.
View: Text | PDF

Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model

  • Text
  • PDF
Abstract

Myasthenia gravis (MG) with anti–acetylcholine receptor (AChR) Abs is an autoimmune disease characterized by severe defects in immune regulation and thymic inflammation. Because mesenchymal stem cells (MSCs) display immunomodulatory features, we investigated whether and how in vitro–preconditioned human MSCs (cMSCs) could treat MG disease. We developed a new humanized preclinical model by subcutaneously grafting thymic MG fragments into immunodeficient NSG mice (NSG-MG model). Ninety percent of the animals displayed human anti-AChR Abs in the serum, and 50% of the animals displayed MG-like symptoms that correlated with the loss of AChR at the muscle endplates. Interestingly, each mouse experiment recapitulated the MG features of each patient. We next demonstrated that cMSCs markedly improved MG, reducing the level of anti-AChR Abs in the serum and restoring AChR expression at the muscle endplate. Resting MSCs had a smaller effect. Finally, we showed that the underlying mechanisms involved (a) the inhibition of cell proliferation, (b) the inhibition of B cell–related and costimulatory molecules, and (c) the activation of the complement regulator DAF/CD55. In conclusion, this study shows that a preconditioning step promotes the therapeutic effects of MSCs via combined mechanisms, making cMSCs a promising strategy for treating MG and potentially other autoimmune diseases.

Authors

Muriel Sudres, Marie Maurer, Marieke Robinet, Jacky Bismuth, Frédérique Truffault, Diane Girard, Nadine Dragin, Mohamed Attia, Elie Fadel, Nicola Santelmo, Camille Sicsic, Talma Brenner, Sonia Berrih-Aknin

×

Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell–associated damage in IFNα-driven lupus nephritis
Arna Katewa, … , Michael J. Townsend, Karin Reif
Arna Katewa, … , Michael J. Townsend, Karin Reif
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e90111. https://doi.org/10.1172/jci.insight.90111.
View: Text | PDF

Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell–associated damage in IFNα-driven lupus nephritis

  • Text
  • PDF
Abstract

Systemic lupus erythematosus (SLE) is often associated with exaggerated B cell activation promoting plasma cell generation, immune-complex deposition in the kidney, renal infiltration of myeloid cells, and glomerular nephritis. Type-I IFNs amplify these autoimmune processes and promote severe disease. Bruton’s tyrosine kinase (Btk) inhibitors are considered novel therapies for SLE. We describe the characterization of a highly selective reversible Btk inhibitor, G-744. G-744 is efficacious, and superior to blocking BAFF and Syk, in ameliorating severe lupus nephritis in both spontaneous and IFNα-accelerated lupus in NZB/W_F1 mice in therapeutic regimens. Selective Btk inhibition ablated plasmablast generation, reduced autoantibodies, and — similar to cyclophosphamide — improved renal pathology in IFNα-accelerated lupus. Employing global transcriptional profiling of spleen and kidney coupled with cross-species human modular repertoire analyses, we identify similarities in the inflammatory process between mice and humans, and we demonstrate that G-744 reduced gene expression signatures essential for splenic B cell terminal differentiation, particularly the secretory pathway, as well as renal transcriptional profiles coupled with myeloid cell–mediated pathology and glomerular plus tubulointerstitial disease in human glomerulonephritis patients. These findings reveal the mechanism through which a selective Btk inhibitor blocks murine autoimmune kidney disease, highlighting pathway activity that may translate to human SLE.

Authors

Arna Katewa, Yugang Wang, Jason A. Hackney, Tao Huang, Eric Suto, Nandhini Ramamoorthi, Cary D. Austin, Meire Bremer, Jacob Zhi Chen, James J. Crawford, Kevin S. Currie, Peter Blomgren, Jason DeVoss, Julie A. DiPaolo, Jonathan Hau, Adam Johnson, Justin Lesch, Laura E. DeForge, Zhonghua Lin, Marya Liimatta, Joseph W. Lubach, Sami McVay, Zora Modrusan, Allen Nguyen, Chungkee Poon, Jianyong Wang, Lichuan Liu, Wyne P. Lee, Harvey Wong, Wendy B. Young, Michael J. Townsend, Karin Reif

×

Long-term follow-up of a randomized AAV2-GAD gene therapy trial for Parkinson’s disease
Martin Niethammer, … , Michael G. Kaplitt, Andrew Feigin
Martin Niethammer, … , Michael G. Kaplitt, Andrew Feigin
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e90133. https://doi.org/10.1172/jci.insight.90133.
View: Text | PDF

Long-term follow-up of a randomized AAV2-GAD gene therapy trial for Parkinson’s disease

  • Text
  • PDF
Abstract

BACKGROUND. We report the 12-month clinical and imaging data on the effects of bilateral delivery of the glutamic acid decarboxylase gene into the subthalamic nuclei (STN) of advanced Parkinson’s disease (PD) patients.

METHODS. 45 PD patients were enrolled in a 6-month double-blind randomized trial of bilateral AAV2-GAD delivery into the STN compared with sham surgery and were followed for 12 months in open-label fashion. Subjects were assessed with clinical outcome measures and 18F-fluorodeoxyglucose (FDG) PET imaging.

RESULTS. Improvements under the blind in Unified Parkinson’s Disease Rating Scale (UPDRS) motor scores in the AAV2-GAD group compared with the sham group continued at 12 months [time effect: F(4,138) = 11.55, P < 0.001; group effect: F(1,35) = 5.45, P < 0.03; repeated-measures ANOVA (RMANOVA)]. Daily duration of levodopa-induced dyskinesias significantly declined at 12 months in the AAV2-GAD group (P = 0.03; post-hoc Bonferroni test), while the sham group was unchanged. Analysis of all FDG PET images over 12 months revealed significant metabolic declines (P < 0.001; statistical parametric mapping RMANOVA) in the thalamus, striatum, and prefrontal, anterior cingulate, and orbitofrontal cortices in the AAV2-GAD group compared with the sham group. Across all time points, changes in regional metabolism differed for the two groups in all areas, with significant declines only in the AAV2-GAD group (P < 0.005; post-hoc Bonferroni tests). Furthermore, baseline metabolism in the prefrontal cortex (PFC) correlated with changes in motor UPDRS scores; the higher the baseline PFC metabolism, the better the clinical outcome.

CONCLUSION. These findings show that clinical benefits after gene therapy with STN AAV2-GAD in PD patients persist at 12 months.

TRIAL REGISTRATION. ClinicalTrials.gov NCT00643890.

FUNDING. Neurologix Inc.

Authors

Martin Niethammer, Chris C. Tang, Peter A. LeWitt, Ali R. Rezai, Maureen A. Leehey, Steven G. Ojemann, Alice W. Flaherty, Emad N. Eskandar, Sandra K. Kostyk, Atom Sarkar, Mustafa S. Siddiqui, Stephen B. Tatter, Jason M. Schwalb, Kathleen L. Poston, Jaimie M. Henderson, Roger M. Kurlan, Irene H. Richard, Christine V. Sapan, David Eidelberg, Matthew J. During, Michael G. Kaplitt, Andrew Feigin

×

MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD
Alan C-Y. Hsu, … , Philip M. Hansbro, Peter A. Wark
Alan C-Y. Hsu, … , Philip M. Hansbro, Peter A. Wark
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e90443. https://doi.org/10.1172/jci.insight.90443.
View: Text | PDF

MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD

  • Text
  • PDF
Abstract

Influenza A virus (IAV) infections lead to severe inflammation in the airways. Patients with chronic obstructive pulmonary disease (COPD) characteristically have exaggerated airway inflammation and are more susceptible to infections with severe symptoms and increased mortality. The mechanisms that control inflammation during IAV infection and the mechanisms of immune dysregulation in COPD are unclear. We found that IAV infections lead to increased inflammatory and antiviral responses in primary bronchial epithelial cells (pBECs) from healthy nonsmoking and smoking subjects. In pBECs from COPD patients, infections resulted in exaggerated inflammatory but deficient antiviral responses. A20 is an important negative regulator of NF-κB–mediated inflammatory but not antiviral responses, and A20 expression was reduced in COPD. IAV infection increased the expression of miR-125a or -b, which directly reduced the expression of A20 and mitochondrial antiviral signaling (MAVS), and caused exaggerated inflammation and impaired antiviral responses. These events were replicated in vivo in a mouse model of experimental COPD. Thus, miR-125a or -b and A20 may be targeted therapeutically to inhibit excessive inflammatory responses and enhance antiviral immunity in IAV infections and in COPD.

Authors

Alan C-Y. Hsu, Kamal Dua, Malcolm R. Starkey, Tatt-Jhong Haw, Prema M. Nair, Kristy Nichol, Nathan Zammit, Shane T. Grey, Katherine J. Baines, Paul S. Foster, Philip M. Hansbro, Peter A. Wark

×

RIP140 in monocytes/macrophages regulates osteoclast differentiation and bone homeostasis
Bomi Lee, … , Anne Gingery, Li-Na Wei
Bomi Lee, … , Anne Gingery, Li-Na Wei
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e90517. https://doi.org/10.1172/jci.insight.90517.
View: Text | PDF

RIP140 in monocytes/macrophages regulates osteoclast differentiation and bone homeostasis

  • Text
  • PDF
Abstract

Osteolytic bone diseases, such as osteoporosis, are characterized by diminished bone quality and increased fracture risk. The therapeutic challenge remains to maintain bone homeostasis with a balance between osteoclast-mediated resorption and osteoblast-mediated formation. Osteoclasts are formed by the fusion of monocyte/macrophage-derived precursors. Here we report, to our knowledge for the first time, that receptor-interacting protein 140 (RIP140) expression in osteoclast precursors and its protein regulation are crucial for osteoclast differentiation, activity, and coupled bone formation. In mice, monocyte/macrophage–specific knockdown of RIP140 (mϕRIP140KD) resulted in a cancellous osteopenic phenotype with significantly increased bone resorption and reduced bone formation. Osteoclast precursors isolated from mϕRIP140KD mice had significantly increased differentiation potential. Furthermore, conditioned media from mϕRIP140KD primary osteoclast cultures significantly suppressed osteoblast differentiation. This suppressive activity was effectively and rapidly terminated by specific Syk-stimulated RIP140 protein degradation. Mechanistic analysis revealed that RIP140 functions primarily by inhibiting osteoclast differentiation through forming a transcription-suppressor complex with testicular receptor 4 (TR4) to repress osteoclastogenic genes. These data reveal that monocyte/macrophage RIP140/TR4 complexes may serve as a critical transcription regulatory complex maintaining homeostasis of osteoclast differentiation, activity, and coupling with osteoblast formation. Accordingly, we propose a potentially novel therapeutic strategy, specifically targeting osteoclast precursor RIP140 protein in osteolytic bone diseases.

Authors

Bomi Lee, Urszula T. Iwaniec, Russell T. Turner, Yi-Wei Lin, Bart L. Clarke, Anne Gingery, Li-Na Wei

×

IL-21 is required for CD4 memory formation in response to viral infection
Yuqing Yuan, … , Yiping Yang, Xiaopei Huang
Yuqing Yuan, … , Yiping Yang, Xiaopei Huang
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e90652. https://doi.org/10.1172/jci.insight.90652.
View: Text | PDF

IL-21 is required for CD4 memory formation in response to viral infection

  • Text
  • PDF
Abstract

IL-21 has been shown to play an important role in the CD8 T cell response during acute and chronic viral infections. However, the role of IL-21 signaling in the CD4 T cell response to viral infection remains incompletely defined. In a model of infection with vaccinia virus, we show that intrinsic IL-21 signaling on CD4 T cells was critical for the formation of memory CD4 T cells in vivo. We further reveal that IL-21 promoted CD4 T cell survival in a mechanism dependent on activation of the STAT1 and STAT3 signaling pathways. In addition, the activation of Akt is also required for IL-21–dependent survival of CD4 T cells in vivo. These results identify a critical role for intrinsic IL-21 signaling in CD4 T cell survival and memory formation in response to viral infection in vivo and may provide insights into the design of effective vaccine strategies.

Authors

Yuqing Yuan, Yiping Yang, Xiaopei Huang

×

Prolonged activation of IL-5–producing ILC2 causes pulmonary arterial hypertrophy
Masashi Ikutani, … , Satoshi Takaki, Kiyoshi Takatsu
Masashi Ikutani, … , Satoshi Takaki, Kiyoshi Takatsu
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e90721. https://doi.org/10.1172/jci.insight.90721.
View: Text | PDF

Prolonged activation of IL-5–producing ILC2 causes pulmonary arterial hypertrophy

  • Text
  • PDF
Abstract

IL-33 is one of the critical cytokines that activates group 2 innate lymphoid cells (ILC2s) and mediates allergic reactions. Accumulating evidence suggests that IL-33 is also involved in the pathogenesis of several chronic inflammatory diseases. Previously, we generated an IL-5 reporter mouse and revealed that lung IL-5–producing ILC2s played essential roles in regulating eosinophil biology. In this study, we evaluated the consequences of IL-33 administration over a long period, and we observed significant expansion of ILC2s and eosinophils surrounding pulmonary arteries. Unexpectedly, pulmonary arteries showed severe occlusive hypertrophy that was ameliorated in IL-5– or eosinophil-deficient mice, but not in Rag2-deficient mice. This indicates that IL-5–producing ILC2s and eosinophils play pivotal roles in pulmonary arterial hypertrophy. Administration of a clinically used vasodilator was effective in reducing IL-33–induced hypertrophy and repressed the expansion of ILC2s and eosinophils. Taken together, these observations demonstrate a previously unrecognized mechanism in the development of pulmonary arterial hypertrophy and the causative roles of ILC2 in the process.

Authors

Masashi Ikutani, Koichi Tsuneyama, Makoto Kawaguchi, Junya Fukuoka, Fujimi Kudo, Susumu Nakae, Makoto Arita, Yoshinori Nagai, Satoshi Takaki, Kiyoshi Takatsu

×

The impact of environmental enrichment on the murine inflammatory immune response
Samuel Brod, … , Mauro Perretti, Fulvio D’Acquisto
Samuel Brod, … , Mauro Perretti, Fulvio D’Acquisto
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e90723. https://doi.org/10.1172/jci.insight.90723.
View: Text | PDF

The impact of environmental enrichment on the murine inflammatory immune response

  • Text
  • PDF
Abstract

Living in a mentally and physically stimulating environment has been suggested to have a beneficial effect on the immune response. This study investigates these effects, utilizing a 2-week program of environmental enrichment (EE) and 2 models of acute inflammation: zymosan-induced peritonitis (ZIP) and the cecal ligation and puncture (CLP) model of sepsis. Our results revealed that following exposure to EE, mice possessed a significantly higher circulating neutrophil to lymphocyte ratio compared with control animals. When subject to ZIP, EE animals exhibit enhanced neutrophil and macrophage influx into their peritoneal cavity. Corresponding results were found in CLP, where we observed an improved capacity for enriched animals to clear systemic microbial infection. Ex vivo investigation of leukocyte activity also revealed that macrophages from EE mice presented an enhanced phagocytic capacity. Supporting these findings, microarray analysis of EE animals revealed the increased expression of immunomodulatory genes associated with a heightened and immunoprotective status. Taken together, these results provide potentially novel mechanisms by which EE influences the development and dynamics of the immune response.

Authors

Samuel Brod, Thomas Gobbetti, Beatrice Gittens, Masahiro Ono, Mauro Perretti, Fulvio D’Acquisto

×

Inhibition of neuronal ferroptosis protects hemorrhagic brain
Qian Li, … , Brent R. Stockwell, Jian Wang
Qian Li, … , Brent R. Stockwell, Jian Wang
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e90777. https://doi.org/10.1172/jci.insight.90777.
View: Text | PDF

Inhibition of neuronal ferroptosis protects hemorrhagic brain

  • Text
  • PDF
Abstract

Intracerebral hemorrhage (ICH) causes high mortality and morbidity, but our knowledge of post-ICH neuronal death and related mechanisms is limited. In this study, we first demonstrated that ferroptosis, a newly identified form of cell death, occurs in the collagenase-induced ICH model in mice. We found that administration of ferrostatin-1, a specific inhibitor of ferroptosis, prevented neuronal death and reduced iron deposition induced by hemoglobin in organotypic hippocampal slice cultures (OHSCs). Mice treated with ferrostatin-1 after ICH exhibited marked brain protection and improved neurologic function. Additionally, we found that ferrostatin-1 reduced lipid reactive oxygen species production and attenuated the increased expression level of PTGS2 and its gene product cyclooxygenase-2 ex vivo and in vivo. Moreover, ferrostatin-1 in combination with other inhibitors that target different forms of cell death prevented hemoglobin-induced cell death in OHSCs and human induced pluripotent stem cell–derived neurons better than any inhibitor alone. These results indicate that ferroptosis contributes to neuronal death after ICH, that administration of ferrostatin-1 protects hemorrhagic brain, and that cyclooxygenase-2 could be a biomarker of ferroptosis. The insights gained from this study will advance our knowledge of the post-ICH cell death cascade and be essential for future preclinical studies.

Authors

Qian Li, Xiaoning Han, Xi Lan, Yufeng Gao, Jieru Wan, Frederick Durham, Tian Cheng, Jie Yang, Zhongyu Wang, Chao Jiang, Mingyao Ying, Raymond C. Koehler, Brent R. Stockwell, Jian Wang

×

Efficacy of ALK5 inhibition in myelofibrosis
Lanzhu Yue, … , Amit Verma, Pearlie K. Epling-Burnette
Lanzhu Yue, … , Amit Verma, Pearlie K. Epling-Burnette
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e90932. https://doi.org/10.1172/jci.insight.90932.
View: Text | PDF

Efficacy of ALK5 inhibition in myelofibrosis

  • Text
  • PDF
Abstract

Myelofibrosis (MF) is a bone marrow disorder characterized by clonal myeloproliferation, aberrant cytokine production, extramedullary hematopoiesis, and bone marrow fibrosis. Although somatic mutations in JAK2, MPL, and CALR have been identified in the pathogenesis of these diseases, inhibitors of the Jak2 pathway have not demonstrated efficacy in ameliorating MF in patients. TGF-β family members are profibrotic cytokines and we observed significant TGF-β1 isoform overexpression in a large cohort of primary MF patient samples. Significant overexpression of TGF-β1 was also observed in murine clonal MPLW515L megakaryocytic cells. TGF-β1 stimulated the deposition of excessive collagen by mesenchymal stromal cells (MSCs) by activating the TGF-β receptor I kinase (ALK5)/Smad3 pathway. MSCs derived from MPLW515L mice demonstrated sustained overproduction of both collagen I and collagen III, effects that were abrogated by ALK5 inhibition in vitro and in vivo. Importantly, use of galunisertib, a clinically active ALK5 inhibitor, significantly improved MF in both MPLW515L and JAK2V617F mouse models. These data demonstrate the role of malignant hematopoietic stem cell (HSC)/TGF-β/MSC axis in the pathogenesis of MF, and provide a preclinical rationale for ALK5 blockade as a therapeutic strategy in MF.

Authors

Lanzhu Yue, Matthias Bartenstein, Wanke Zhao, Wanting Tina Ho, Ying Han, Cem Murdun, Adam W. Mailloux, Ling Zhang, Xuefeng Wang, Anjali Budhathoki, Kith Pradhan, Franck Rapaport, Huaquan Wang, Zonghong Shao, Xiubao Ren, Ulrich Steidl, Ross L. Levine, Zhizhuang Joe Zhao, Amit Verma, Pearlie K. Epling-Burnette

×

Role of adenylyl cyclase 6 in the development of lithium-induced nephrogenic diabetes insipidus
Søren Brandt Poulsen, … , Timo Rieg, Robert A. Fenton
Søren Brandt Poulsen, … , Timo Rieg, Robert A. Fenton
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e91042. https://doi.org/10.1172/jci.insight.91042.
View: Text | PDF

Role of adenylyl cyclase 6 in the development of lithium-induced nephrogenic diabetes insipidus

  • Text
  • PDF
Abstract

Psychiatric patients treated with lithium (Li+) may develop nephrogenic diabetes insipidus (NDI). Although the etiology of Li+-induced NDI (Li-NDI) is poorly understood, it occurs partially due to reduced aquaporin-2 (AQP2) expression in the kidney collecting ducts. A mechanism postulated for this is that Li+ inhibits adenylyl cyclase (AC) activity, leading to decreased cAMP, reduced AQP2 abundance, and less membrane targeting. We hypothesized that Li-NDI would not develop in mice lacking AC6. Whole-body AC6 knockout (AC6–/–) mice and potentially novel connecting tubule/principal cell–specific AC6 knockout (AC6loxloxCre) mice had approximately 50% lower urine osmolality and doubled water intake under baseline conditions compared with controls. Dietary Li+ administration increased water intake and reduced urine osmolality in control, AC6–/–, and AC6loxloxCre mice. Consistent with AC6–/– mice, medullary AQP2 and pS256-AQP2 abundances were lower in AC6loxloxCre mice compared with controls under standard conditions, and levels were further reduced after Li+ administration. AC6loxloxCre and control mice had a similar increase in the numbers of proliferating cell nuclear antigen–positive cells in response to Li+. However, AC6loxloxCre mice had a higher number of H+-ATPase B1 subunit–positive cells under standard conditions and after Li+ administration. Collectively, AC6 has a minor role in Li-NDI development but may be important for determining the intercalated cell–to–principal cell ratio.

Authors

Søren Brandt Poulsen, Tina Bøgelund Kristensen, Heddwen L. Brooks, Donald E. Kohan, Timo Rieg, Robert A. Fenton

×

Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice
Xiaomei Feng, … , Mervyn Maze, Suneil K. Koliwad
Xiaomei Feng, … , Mervyn Maze, Suneil K. Koliwad
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e91229. https://doi.org/10.1172/jci.insight.91229.
View: Text | PDF

Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice

  • Text
  • PDF
Abstract

Surgery can induce cognitive decline, a risk that increases with advancing age. In rodents, postoperative cognitive decline (POCD) is associated with the inflammatory activation of hippocampal microglia. To examine the role of microglia in POCD, we inhibited the colony-stimulating factor 1 receptor (CSF1R) in adult mice, effectively depleting CNS microglia. Surgical trauma (tibial fracture) reduced the ability of mice to remember a conditioned response learned preoperatively, a deficit more pronounced and persistent in mice with diet-induced obesity (DIO). Whereas microglial depletion by itself did not affect learning or memory, perioperative microglial depletion remarkably protected mice, including those with DIO, from POCD. This protection was associated with reduced hippocampal levels of inflammatory mediators, abrogation of hippocampal recruitment of CCR2+ leukocytes, and higher levels of circulating inflammation-resolving factors. Targeting microglia may thus be a viable strategy to mitigate the development of POCD, particularly in those with increased vulnerability.

Authors

Xiaomei Feng, Martin Valdearcos, Yosuke Uchida, David Lutrin, Mervyn Maze, Suneil K. Koliwad

×

LipidFinder: A computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets
Anne O’Connor, … , Stuart M. Allen, Valerie B. O’Donnell
Anne O’Connor, … , Stuart M. Allen, Valerie B. O’Donnell
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e91634. https://doi.org/10.1172/jci.insight.91634.
View: Text | PDF

LipidFinder: A computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets

  • Text
  • PDF
Abstract

Accurate and high-quality curation of lipidomic datasets generated from plasma, cells, or tissues is becoming essential for cell biology investigations and biomarker discovery for personalized medicine. However, a major challenge lies in removing artifacts otherwise mistakenly interpreted as real lipids from large mass spectrometry files (>60 K features), while retaining genuine ions in the dataset. This requires powerful informatics tools; however, available workflows have not been tailored specifically for lipidomics, particularly discovery research. We designed LipidFinder, an open-source Python workflow. An algorithm is included that optimizes analysis based on users’ own data, and outputs are screened against online databases and categorized into LIPID MAPS classes. LipidFinder outperformed three widely used metabolomics packages using data from human platelets. We show a family of three 12-hydroxyeicosatetraenoic acid phosphoinositides (16:0/, 18:1/, 18:0/12-HETE-PI) generated by thrombin-activated platelets, indicating crosstalk between eicosanoid and phosphoinositide pathways in human cells. The software is available on GitHub (https://github.com/cjbrasher/LipidFinder), with full userguides.

Authors

Anne O’Connor, Christopher J. Brasher, David A. Slatter, Sven W. Meckelmann, Jade I. Hawksworth, Stuart M. Allen, Valerie B. O’Donnell

×

M1-like monocytes are a major immunological determinant of severity in previously healthy adults with life-threatening influenza
Suzanne L. Cole, … , Andrew J. McMichael, Ling-Pei Ho
Suzanne L. Cole, … , Andrew J. McMichael, Ling-Pei Ho
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e91868. https://doi.org/10.1172/jci.insight.91868.
View: Text | PDF

M1-like monocytes are a major immunological determinant of severity in previously healthy adults with life-threatening influenza

  • Text
  • PDF
Abstract

In each influenza season, a distinct group of young, otherwise healthy individuals with no risk factors succumbs to life-threatening infection. To better understand the cause for this, we analyzed a broad range of immune responses in blood from a unique cohort of patients, comprising previously healthy individuals hospitalized with and without respiratory failure during one influenza season, and infected with one specific influenza A strain. This analysis was compared with similarly hospitalized influenza patients with known risk factors (total of n = 60 patients recruited). We found a sustained increase in a specific subset of proinflammatory monocytes, with high TNF-α expression and an M1-like phenotype (independent of viral titers), in these previously healthy patients with severe disease. The relationship between M1-like monocytes and immunopathology was strengthened using murine models of influenza, in which severe infection generated using different models (including the high-pathogenicity H5N1 strain) was also accompanied by high levels of circulating M1-like monocytes. Additionally, a raised M1/M2 macrophage ratio in the lungs was observed. These studies identify a specific subtype of monocytes as a modifiable immunological determinant of disease severity in this subgroup of severely ill, previously healthy patients, offering potential novel therapeutic avenues.

Authors

Suzanne L. Cole, Jake Dunning, Wai Ling Kok, Kambez Hajipouran Benam, Adel Benlahrech, Emmanouela Repapi, Fernando O. Martinez, Lydia Drumright, Timothy J. Powell, Michael Bennett, Ruth Elderfield, Catherine Thomas, MOSAIC investigators, Tao Dong, John McCauley, Foo Y. Liew, Stephen Taylor, Maria Zambon, Wendy Barclay, Vincenzo Cerundolo, Peter J. Openshaw, Andrew J. McMichael, Ling-Pei Ho

×

BCG vaccination induces HIV target cell activation in HIV-exposed infants in a randomized trial
Melanie A. Gasper, … , Donald L. Sodora, Heather B. Jaspan
Melanie A. Gasper, … , Donald L. Sodora, Heather B. Jaspan
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e91963. https://doi.org/10.1172/jci.insight.91963.
View: Text | PDF

BCG vaccination induces HIV target cell activation in HIV-exposed infants in a randomized trial

  • Text
  • PDF
Abstract

BACKGROUND. Bacillus Calmette-Guérin (BCG) vaccine is administered at birth to protect infants against tuberculosis throughout Africa, where most perinatal HIV-1 transmission occurs. We examined whether BCG vaccination alters the levels of activated HIV target T cells in HIV-exposed South African infants.

METHODS. HIV-exposed infants were randomized to receive routine (at birth) or delayed (at 8 weeks) BCG vaccination. Activated and CCR5-expressing peripheral blood CD4+ T cell, monocyte, and NK cell frequencies were evaluated by flow cytometry and immune gene expression via PCR using Biomark (Fluidigm).

RESULTS. Of 149 infants randomized, 92% (n = 137) were retained at 6 weeks: 71 in the routine BCG arm and 66 in the delayed arm. Routine BCG vaccination led to a 3-fold increase in systemic activation of HIV target CD4+CCR5+ T cells (HLA-DR+CD38+) at 6 weeks (0.25% at birth versus 0.08% in delayed vaccination groups; P = 0.029), which persisted until 8 weeks of age when the delayed arm was vaccinated. Vaccination of the infants in the delayed arm at 8 weeks resulted in a similar increase in activated CD4+CCR5+ T cells. The increase in activated T cells was associated with increased levels of MHC class II transactivator (CIITA), IL12RB1, and IFN-α1 transcripts within peripheral blood mononuclear cells but minimal changes in innate cells.

CONCLUSION. BCG vaccination induces immune changes in HIV-exposed infants, including an increase in the proportion of activated CCR5+CD4+ HIV target cells. These findings provide insight into optimal BCG vaccine timing to minimize the risks of HIV transmissions to exposed infants while preserving potential benefits conferred by BCG vaccination.

TRIAL REGISTRATION. ClinicalTrials.gov NCT02062580.

FUNDING. This trial was sponsored by the Elizabeth Glaser Pediatric AIDS Foundation (MV-00-9-900-01871-0-00) and the Thrasher Foundation (NR-0095); for details, see Acknowledgments.

Authors

Melanie A. Gasper, Anneke C. Hesseling, Isaac Mohar, Landon Myer, Tali Azenkot, Jo-Ann S. Passmore, Willem Hanekom, Mark F. Cotton, I. Nicholas Crispe, Donald L. Sodora, Heather B. Jaspan

×

GM-CSF is not essential for experimental autoimmune encephalomyelitis but promotes brain-targeted disease
Emily R. Pierson, Joan M. Goverman
Emily R. Pierson, Joan M. Goverman
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e92362. https://doi.org/10.1172/jci.insight.92362.
View: Text | PDF

GM-CSF is not essential for experimental autoimmune encephalomyelitis but promotes brain-targeted disease

  • Text
  • PDF
Abstract

Experimental autoimmune encephalomyelitis (EAE) has been used as an animal model of multiple sclerosis to identify pathogenic cytokines that could be therapeutic targets. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is the only cytokine reported to be essential for EAE. We investigated the role of GM-CSF in EAE in C3HeB/FeJ mice that uniquely exhibit extensive brain and spinal cord inflammation. Unexpectedly, GM-CSF–deficient C3HeB/FeJ mice were fully susceptible to EAE because IL-17 activity compensated for the loss of GM-CSF during induction of spinal cord–targeted disease. In contrast, both GM-CSF and IL-17 were needed to fully overcome the inhibitory influence of IFN-γ on the induction of inflammation in the brain. Both GM-CSF and IL-17 independently promoted neutrophil accumulation in the brain, which was essential for brain-targeted disease. These results identify a GM-CSF/IL-17/IFN-γ axis that regulates inflammation in the central nervous system and suggest that a combination of cytokine-neutralizing therapies may be needed to dampen central nervous system autoimmunity.

Authors

Emily R. Pierson, Joan M. Goverman

×

Resistance to hypertension mediated by intercalated cells of the collecting duct
Johannes Stegbauer, … , Susan B. Gurley, Thomas M. Coffman
Johannes Stegbauer, … , Susan B. Gurley, Thomas M. Coffman
Published April 6, 2017
Citation Information: JCI Insight. 2017;2(7):e92720. https://doi.org/10.1172/jci.insight.92720.
View: Text | PDF

Resistance to hypertension mediated by intercalated cells of the collecting duct

  • Text
  • PDF
Abstract

The renal collecting duct (CD), as the terminal segment of the nephron, is responsible for the final adjustments to the amount of sodium excreted in urine. While angiotensin II modulates reabsorptive functions of the CD, the contribution of these actions to physiological homeostasis is not clear. To examine this question, we generated mice with cell-specific deletion of AT1A receptors from the CD. Elimination of AT1A receptors from both principal and intercalated cells (CDKO mice) had no effect on blood pressures at baseline or during successive feeding of low- or high-salt diets. In contrast, the severity of hypertension caused by chronic infusion of angiotensin II was paradoxically exaggerated in CDKO mice compared with controls. In wild-type mice, angiotensin II induced robust expression of cyclooxygenase-2 (COX-2) in renal medulla, primarily localized to intercalated cells. Upregulation of COX-2 was diminished in CDKO mice, resulting in reduced generation of vasodilator prostanoids. This impaired expression of COX-2 has physiological consequences, since administration of a specific COX-2 inhibitor to CDKO and control mice during angiotensin II infusion equalized their blood pressures. Stimulation of COX-2 was also triggered by exposure of isolated preparations of medullary CDs to angiotensin II. Deletion of AT1A receptors from principal cells alone did not affect angiotensin II–dependent COX2 stimulation, implicating intercalated cells as the main source of COX2 in this setting. These findings suggest a novel paracrine role for the intercalated cell to attenuate the severity of hypertension. Strategies for preserving or augmenting this pathway may have value for improving the management of hypertension.

Authors

Johannes Stegbauer, Daian Chen, Marcela Herrera, Matthew A. Sparks, Ting Yang, Eva Königshausen, Susan B. Gurley, Thomas M. Coffman

×
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts