Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Issue published October 19, 2017

  • Volume 2, Issue 20
  • Previous Issue | Next Issue
Research Articles
Tracking mesenchymal stem cell contributions to regeneration in an immunocompetent cartilage regeneration model
Daniela Zwolanek, … , Thomas Rülicke, Reinhold G. Erben
Daniela Zwolanek, … , Thomas Rülicke, Reinhold G. Erben
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e87322. https://doi.org/10.1172/jci.insight.87322.
View: Text | PDF

Tracking mesenchymal stem cell contributions to regeneration in an immunocompetent cartilage regeneration model

  • Text
  • PDF
Abstract

It is currently controversially discussed whether mesenchymal stem cells (MSC) facilitate cartilage regeneration in vivo by a progenitor- or a nonprogenitor-mediated mechanism. Here, we describe a potentially novel unbiased in vivo cell tracking system based on transgenic donor and corresponding immunocompetent marker–tolerant recipient mouse and rat lines in inbred genetic backgrounds. Tolerance of recipients was achieved by transgenic expression of an immunologically neutral but physicochemically distinguishable variant of the marker human placental alkaline phosphatase (ALPP). In this dual transgenic system, donor lines ubiquitously express WT, heat-resistant ALPP protein, whereas recipient lines express a heat-labile ALPP mutant (ALPPE451G) resulting from a single amino acid substitution. Tolerance of recipient lines to ALPP-expressing cells and tissues was verified by skin transplantation. Using this model, we show that intraarticularly injected MSC contribute to regeneration of articular cartilage in full-thickness cartilage defects mainly via a nonprogenitor-mediated mechanism.

Authors

Daniela Zwolanek, María Satué, Verena Proell, José R. Godoy, Kathrin I. Odörfer, Magdalena Flicker, Sigrid C. Hoffmann, Thomas Rülicke, Reinhold G. Erben

×

Deficiency of Shank2 causes mania-like behavior that responds to mood stabilizers
Andrea L. Pappas, … , William C. Wetsel, Yong-hui Jiang
Andrea L. Pappas, … , William C. Wetsel, Yong-hui Jiang
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e92052. https://doi.org/10.1172/jci.insight.92052.
View: Text | PDF

Deficiency of Shank2 causes mania-like behavior that responds to mood stabilizers

  • Text
  • PDF
Abstract

Genetic defects in the synaptic scaffolding protein gene, SHANK2, are linked to a variety of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia, intellectual disability, and bipolar disorder, but the molecular mechanisms underlying the pleotropic effects of SHANK2 mutations are poorly understood. We generated and characterized a line of Shank2 mutant mice by deleting exon 24 (Δe24). Shank2Δe24–/– mice engage in significantly increased locomotor activity, display abnormal reward-seeking behavior, are anhedonic, have perturbations in circadian rhythms, and show deficits in social and cognitive behaviors. While these phenotypes recapitulate the pleotropic behaviors associated with human SHANK2-related disorders, major behavioral features in these mice are reminiscent of bipolar disorder. For instance, their hyperactivity was augmented with amphetamine but was normalized with the mood stabilizers lithium and valproate. Shank2 deficiency limited to the forebrain recapitulated the bipolar mania phenotype. The composition and functions of NMDA and AMPA receptors were altered at Shank2-deficient synapses, hinting toward the mechanism underlying these behavioral abnormalities. Human genetic findings support construct validity, and the behavioral features in Shank2 Δe24 mice support face and predictive validities of this model for bipolar mania. Further genetic studies to understand the contribution of SHANK2 deficiencies in bipolar disorder are warranted.

Authors

Andrea L. Pappas, Alexandra L. Bey, Xiaoming Wang, Mark Rossi, Yong Ho Kim, Haidun Yan, Fiona Porkka, Lara J. Duffney, Samantha M. Phillips, Xinyu Cao, Jin-dong Ding, Ramona M. Rodriguiz, Henry H. Yin, Richard J. Weinberg, Ru-Rong Ji, William C. Wetsel, Yong-hui Jiang

×

T cells expressing chimeric antigen receptor promote immune tolerance
Antonio Pierini, … , Seung K. Kim, Everett H. Meyer
Antonio Pierini, … , Seung K. Kim, Everett H. Meyer
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e92865. https://doi.org/10.1172/jci.insight.92865.
View: Text | PDF

T cells expressing chimeric antigen receptor promote immune tolerance

  • Text
  • PDF
Abstract

Cellular therapies based on permanent genetic modification of conventional T cells have emerged as a promising strategy for cancer. However, it remains unknown if modification of T cell subsets, such as Tregs, could be useful in other settings, such as allograft transplantation. Here, we use a modular system based on a chimeric antigen receptor (CAR) that binds covalently modified mAbs to control Treg activation in vivo. Transient expression of this mAb-directed CAR (mAbCAR) in Tregs permitted Treg targeting to specific tissue sites and mitigated allograft responses, such as graft-versus-host disease. mAbCAR Tregs targeted to MHC class I proteins on allografts prolonged islet allograft survival and also prolonged the survival of secondary skin grafts specifically matched to the original islet allograft. Thus, transient genetic modification to produce mAbCAR T cells led to durable immune modulation, suggesting therapeutic targeting strategies for controlling alloreactivity in settings such as organ or tissue transplantation.

Authors

Antonio Pierini, Bettina P. Iliopoulou, Heshan Peiris, Magdiel Pérez-Cruz, Jeanette Baker, Katie Hsu, Xueying Gu, Ping-Ping Zheng, Tom Erkers, Sai-Wen Tang, William Strober, Maite Alvarez, Aaron Ring, Andrea Velardi, Robert S. Negrin, Seung K. Kim, Everett H. Meyer

×

Human alternative Klotho mRNA is a nonsense-mediated mRNA decay target inefficiently spliced in renal disease
Rik Mencke, … , Henri G. Leuvenink, Jan-Luuk Hillebrands
Rik Mencke, … , Henri G. Leuvenink, Jan-Luuk Hillebrands
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e94375. https://doi.org/10.1172/jci.insight.94375.
View: Text | PDF

Human alternative Klotho mRNA is a nonsense-mediated mRNA decay target inefficiently spliced in renal disease

  • Text
  • PDF
Abstract

Klotho is a renal protein involved in phosphate homeostasis, which is downregulated in renal disease. It has long been considered an antiaging factor. Two Klotho gene transcripts are thought to encode membrane-bound and secreted Klotho. Indeed, soluble Klotho is detectable in bodily fluids, but the relative contributions of Klotho secretion and of membrane-bound Klotho shedding are unknown. Recent advances in RNA surveillance reveal that premature termination codons, as present in alternative Klotho mRNA (for secreted Klotho), prime mRNAs for degradation by nonsense-mediated mRNA decay (NMD). Disruption of NMD led to accumulation of alternative Klotho mRNA, indicative of normally continuous degradation. RNA IP for NMD core factor UPF1 resulted in enrichment for alternative Klotho mRNA, which was also not associated with polysomes, indicating no active protein translation. Alternative Klotho mRNA transcripts colocalized with some P bodies, where NMD transcripts are degraded. Moreover, we could not detect secreted Klotho in vitro. These results suggest that soluble Klotho is likely cleaved membrane-bound Klotho only. Furthermore, we found that, especially in acute kidney injury, splicing of the 2 mRNA transcripts is dysregulated, which was recapitulated by various noxious stimuli in vitro. This likely constitutes a novel mechanism resulting in the downregulation of membrane-bound Klotho.

Authors

Rik Mencke, Geert Harms, Jill Moser, Matijs van Meurs, Arjan Diepstra, Henri G. Leuvenink, Jan-Luuk Hillebrands

×

Epigenetic mechanisms underlying maternal diabetes-associated risk of congenital heart disease
Madhumita Basu, … , Zhe Han, Vidu Garg
Madhumita Basu, … , Zhe Han, Vidu Garg
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e95085. https://doi.org/10.1172/jci.insight.95085.
View: Text | PDF

Epigenetic mechanisms underlying maternal diabetes-associated risk of congenital heart disease

  • Text
  • PDF
Abstract

Birth defects are the leading cause of infant mortality, and they are caused by a combination of genetic and environmental factors. Environmental risk factors may contribute to birth defects in genetically susceptible infants by altering critical molecular pathways during embryogenesis, but experimental evidence for gene-environment interactions is limited. Fetal hyperglycemia associated with maternal diabetes results in a 5-fold increased risk of congenital heart disease (CHD), but the molecular basis for this correlation is unknown. Here, we show that the effects of maternal hyperglycemia on cardiac development are sensitized by haploinsufficiency of Notch1, a key transcriptional regulator known to cause CHD. Using ATAC-seq, we found that hyperglycemia decreased chromatin accessibility at the endothelial NO synthase (Nos3) locus, resulting in reduced NO synthesis. Transcription of Jarid2, a regulator of histone methyltransferase complexes, was increased in response to reduced NO, and this upregulation directly resulted in inhibition of Notch1 expression to levels below a threshold necessary for normal heart development. We extended these findings using a Drosophila maternal diabetic model that revealed the evolutionary conservation of this interaction and the Jarid2-mediated mechanism. These findings identify a gene-environment interaction between maternal hyperglycemia and Notch signaling and support a model in which environmental factors cause birth defects in genetically susceptible infants.

Authors

Madhumita Basu, Jun-Yi Zhu, Stephanie LaHaye, Uddalak Majumdar, Kai Jiao, Zhe Han, Vidu Garg

×

Reevaluation of immune activation in the era of cART and an aging HIV-infected population
Lesley R. de Armas, … , Kristopher L. Arheart, Savita Pahwa
Lesley R. de Armas, … , Kristopher L. Arheart, Savita Pahwa
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e95726. https://doi.org/10.1172/jci.insight.95726.
View: Text | PDF

Reevaluation of immune activation in the era of cART and an aging HIV-infected population

  • Text
  • PDF
Abstract

Biological aging is associated with immune activation (IA) and declining immunity due to systemic inflammation. It is widely accepted that HIV infection causes persistent IA and premature immune senescence despite effective antiretroviral therapy and virologic suppression; however, the effects of combined HIV infection and aging are not well defined. Here, we assessed the relationship between markers of IA and inflammation during biological aging in HIV-infected and -uninfected populations. Antibody response to seasonal influenza vaccination was implemented as a measure of immune competence and relationships between IA, inflammation, and antibody responses were explored using statistical modeling appropriate for integrating high-dimensional data sets. Our results show that markers of IA, such as coexpression of HLA antigen D related (HLA-DR) and CD38 on CD4+ T cells, exhibit strong associations with HIV infection but not with biological age. Certain variables that showed a strong relationship with aging, such as declining naive and CD38+ CD4 and CD8+ T cells, did so regardless of HIV infection. Interestingly, the variable of biological age was not identified in a predictive model as significantly impacting vaccine responses in either group, while distinct IA and inflammatory variables were closely associated with vaccine response in HIV-infected and -uninfected populations. These findings shed light on the most relevant and persistent immune defects during virological suppression with antiretroviral therapy.

Authors

Lesley R. de Armas, Suresh Pallikkuth, Varghese George, Stefano Rinaldi, Rajendra Pahwa, Kristopher L. Arheart, Savita Pahwa

×

Blunted rise in brain glucose levels during hyperglycemia in adults with obesity and T2DM
Janice J. Hwang, … , Graeme Mason, Robert S. Sherwin
Janice J. Hwang, … , Graeme Mason, Robert S. Sherwin
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e95913. https://doi.org/10.1172/jci.insight.95913.
View: Text | PDF

Blunted rise in brain glucose levels during hyperglycemia in adults with obesity and T2DM

  • Text
  • PDF
Abstract

In rodent models, obesity and hyperglycemia alter cerebral glucose metabolism and glucose transport into the brain, resulting in disordered cerebral function as well as inappropriate responses to homeostatic and hedonic inputs. Whether similar findings are seen in the human brain remains unclear. In this study, 25 participants (9 healthy participants; 10 obese nondiabetic participants; and 6 poorly controlled, insulin- and metformin-treated type 2 diabetes mellitus (T2DM) participants) underwent 1H magnetic resonance spectroscopy scanning in the occipital lobe to measure the change in intracerebral glucose levels during a 2-hour hyperglycemic clamp (glucose ~220 mg/dl). The change in intracerebral glucose was significantly different across groups after controlling for age and sex, despite similar plasma glucose levels at baseline and during hyperglycemia. Compared with lean participants, brain glucose increments were lower in participants with obesity and T2DM. Furthermore, the change in brain glucose correlated inversely with plasma free fatty acid (FFA) levels during hyperglycemia. These data suggest that obesity and poorly controlled T2DM progressively diminish brain glucose responses to hyperglycemia, which has important implications for understanding not only the altered feeding behavior, but also the adverse neurocognitive consequences associated with obesity and T2DM.

Authors

Janice J. Hwang, Lihong Jiang, Muhammad Hamza, Elizabeth Sanchez Rangel, Feng Dai, Renata Belfort-DeAguiar, Lisa Parikh, Brian B. Koo, Douglas L. Rothman, Graeme Mason, Robert S. Sherwin

×

Evidence for mast cells contributing to neuromuscular pathology in an inherited model of ALS
Emiliano Trias, … , Joseph S. Beckman, Luis Barbeito
Emiliano Trias, … , Joseph S. Beckman, Luis Barbeito
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e95934. https://doi.org/10.1172/jci.insight.95934.
View: Text | PDF

Evidence for mast cells contributing to neuromuscular pathology in an inherited model of ALS

  • Text
  • PDF
Abstract

Evidence indicates that neuroinflammation contributes to motor neuron degeneration in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease leading to progressive muscular paralysis. However, it remains elusive whether inflammatory cells can interact with degenerating distal motor axons, influencing the progressive denervation of neuromuscular junctions (NMJs). By analyzing the muscle extensor digitorum longus (EDL) following paralysis onset in the SOD1G93A rat model, we have observed a massive infiltration and degranulation of mast cells, starting after paralysis onset and correlating with progressive NMJ denervation. Remarkably, mast cells accumulated around degenerating motor axons and NMJs, and were also associated with macrophages. Mast cell accumulation and degranulation in paralytic EDL muscle was prevented by systemic treatment over 15 days with masitinib, a tyrosine kinase inhibitor currently in clinical trials for ALS exhibiting pharmacological activity affecting mast cells and microglia. Masitinib-induced mast cell reduction resulted in a 35% decrease in NMJ denervation and reduced motor deficits as compared with vehicle-treated rats. Masitinib also normalized macrophage infiltration, as well as regressive changes in Schwann cells and capillary networks observed in advanced paralysis. These findings provide evidence for mast cell contribution to distal axonopathy and paralysis progression in ALS, a mechanism that can be therapeutically targeted by masitinib.

Authors

Emiliano Trias, Sofía Ibarburu, Romina Barreto-Núñez, Valentina Varela, Ivan C. Moura, Patrice Dubreuil, Olivier Hermine, Joseph S. Beckman, Luis Barbeito

×

Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease
Sriram Krishnamoorthy, … , William E. Hobbs, David R. Light
Sriram Krishnamoorthy, … , William E. Hobbs, David R. Light
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e96409. https://doi.org/10.1172/jci.insight.96409.
View: Text | PDF

Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease

  • Text
  • PDF
Abstract

Sickle cell disease (SCD) results from a point mutation in the β-globin gene forming hemoglobin S (HbS), which polymerizes in deoxygenated erythrocytes, triggering recurrent painful vaso-occlusive crises and chronic hemolytic anemia. Reactivation of fetal Hb (HbF) expression ameliorates these symptoms of SCD. Nuclear factor (erythroid derived-2)–like 2 (Nrf2) is a transcription factor that triggers cytoprotective and antioxidant pathways to limit oxidative damage and inflammation and increases HbF synthesis in CD34+ stem cell–derived erythroid progenitors. We investigated the ability of dimethyl fumarate (DMF), a small-molecule Nrf2 agonist, to activate γ-globin transcription and enhance HbF in tissue culture and in murine and primate models. DMF recruited Nrf2 to the γ-globin promoters and the locus control region of the β-globin locus in erythroleukemia cells, elevated HbF in SCD donor–derived erythroid progenitors, and reduced hypoxia-induced sickling. Chronic DMF administration in SCD mice induced HbF and increased Nrf2-dependent genes to detoxify heme and limit inflammation. This improved hematological parameters, reduced plasma-free Hb, and attenuated inflammatory markers. Chronic DMF administration to nonanemic primates increased γ-globin mRNA in BM and HbF protein in rbc. DMF represents a potential therapy for SCD to induce HbF and augment vasoprotection and heme detoxification.

Authors

Sriram Krishnamoorthy, Betty Pace, Dipti Gupta, Sarah Sturtevant, Biaoru Li, Levi Makala, Julia Brittain, Nancy Moore, Benjamin F. Vieira, Timothy Thullen, Ivan Stone, Huo Li, William E. Hobbs, David R. Light

×

Increased putamen hypercapnic vasoreactivity in levodopa-induced dyskinesia
Vincent A. Jourdain, … , Vijay Dhawan, David Eidelberg
Vincent A. Jourdain, … , Vijay Dhawan, David Eidelberg
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e96411. https://doi.org/10.1172/jci.insight.96411.
View: Text | PDF

Increased putamen hypercapnic vasoreactivity in levodopa-induced dyskinesia

  • Text
  • PDF
Abstract

In a rodent model of Parkinson’s disease (PD), levodopa-induced involuntary movements have been linked to striatal angiogenesis — a process that is difficult to document in living human subjects. Angiogenesis can be accompanied by localized increases in cerebral blood flow (CBF) responses to hypercapnia. We therefore explored the possibility that, in the absence of levodopa, local hypercapnic CBF responses are abnormally increased in PD patients with levodopa-induced dyskinesias (LID) but not in their nondyskinetic (NLID) counterparts. We used H215O PET to scan 24 unmedicated PD subjects (12 LID and 12 NLID) and 12 matched healthy subjects in the rest state under normocapnic and hypercapnic conditions. Hypercapnic CBF responses were compared to corresponding levodopa responses from the same subjects. Group differences in hypercapnic vasoreactivity were significant only in the posterior putamen, with greater CBF responses in LID subjects compared with the other subjects. Hypercapnic and levodopa-mediated CBF responses measured in this region exhibited distinct associations with disease severity: the former correlated with off-state motor disability ratings but not symptom duration, whereas the latter correlated with symptom duration but not motor disability. These are the first in vivo human findings linking LID to microvascular changes in the basal ganglia.

Authors

Vincent A. Jourdain, Katharina A. Schindlbeck, Chris C. Tang, Martin Niethammer, Yoon Young Choi, Daniel Markowitz, Amir Nazem, Dominic Nardi, Nicholas Carras, Andrew Feigin, Yilong Ma, Shichun Peng, Vijay Dhawan, David Eidelberg

×

Cinacalcet corrects hypercalcemia in mice with an inactivating Gα11 mutation
Sarah A. Howles, … , Roger D. Cox, Rajesh V. Thakker
Sarah A. Howles, … , Roger D. Cox, Rajesh V. Thakker
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e96540. https://doi.org/10.1172/jci.insight.96540.
View: Text | PDF

Cinacalcet corrects hypercalcemia in mice with an inactivating Gα11 mutation

  • Text
  • PDF
Abstract

Loss-of-function mutations of GNA11, which encodes G-protein subunit α11 (Gα11), a signaling partner for the calcium-sensing receptor (CaSR), result in familial hypocalciuric hypercalcemia type 2 (FHH2). FHH2 is characterized by hypercalcemia, inappropriately normal or raised parathyroid hormone (PTH) concentrations, and normal or low urinary calcium excretion. A mouse model for FHH2 that would facilitate investigations of the in vivo role of Gα11 and the evaluation of calcimimetic drugs, which are CaSR allosteric activators, is not available. We therefore screened DNA from > 10,000 mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for GNA11 mutations and identified a Gα11 variant, Asp195Gly (D195G), which downregulated CaSR-mediated intracellular calcium signaling in vitro, consistent with it being a loss-of-function mutation. Treatment with the calcimimetic cinacalcet rectified these signaling responses. In vivo studies showed mutant heterozygous (Gna11+/195G) and homozygous (Gna11195G/195G) mice to be hypercalcemic with normal or increased plasma PTH concentrations and normal urinary calcium excretion. Cinacalcet (30mg/kg orally) significantly reduced plasma albumin–adjusted calcium and PTH concentrations in Gna11+/195G and Gna11195G/195G mice. Thus, our studies have established a mouse model with a germline loss-of-function Gα11 mutation that is representative for FHH2 in humans and demonstrated that cinacalcet can correct the associated abnormalities of plasma calcium and PTH.

Authors

Sarah A. Howles, Fadil M. Hannan, Caroline M. Gorvin, Sian E. Piret, Anju Paudyal, Michelle Stewart, Tertius A. Hough, M. Andrew Nesbit, Sara Wells, Stephen D.M. Brown, Roger D. Cox, Rajesh V. Thakker

×

Lipoprotein lipase reaches the capillary lumen in chickens despite an apparent absence of GPIHBP1
Cuiwen He, … , Loren G. Fong, Stephen G. Young
Cuiwen He, … , Loren G. Fong, Stephen G. Young
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e96783. https://doi.org/10.1172/jci.insight.96783.
View: Text | PDF

Lipoprotein lipase reaches the capillary lumen in chickens despite an apparent absence of GPIHBP1

  • Text
  • PDF
Abstract

In mammals, GPIHBP1 is absolutely essential for transporting lipoprotein lipase (LPL) to the lumen of capillaries, where it hydrolyzes the triglycerides in triglyceride-rich lipoproteins. In all lower vertebrate species (e.g., birds, amphibians, reptiles, fish), a gene for LPL can be found easily, but a gene for GPIHBP1 has never been found. The obvious question is whether the LPL in lower vertebrates is able to reach the capillary lumen. Using purified antibodies against chicken LPL, we showed that LPL is present on capillary endothelial cells of chicken heart and adipose tissue, colocalizing with von Willebrand factor. When the antibodies against chicken LPL were injected intravenously into chickens, they bound to LPL on the luminal surface of capillaries in heart and adipose tissue. LPL was released rapidly from chicken hearts with an infusion of heparin, consistent with LPL being located inside blood vessels. Remarkably, chicken LPL bound in a specific fashion to mammalian GPIHBP1. However, we could not identify a gene for GPIHBP1 in the chicken genome, nor could we identify a transcript for GPIHBP1 in a large chicken RNA-seq data set. We conclude that LPL reaches the capillary lumen in chickens — as it does in mammals — despite an apparent absence of GPIHBP1.

Authors

Cuiwen He, Xuchen Hu, Rachel S. Jung, Mikael Larsson, Yiping Tu, Sandra Duarte-Vogel, Paul Kim, Norma P. Sandoval, Tara R. Price, Christopher M. Allan, Brian Raney, Haibo Jiang, André Bensadoun, Rosemary L. Walzem, Richard I. Kuo, Anne P. Beigneux, Loren G. Fong, Stephen G. Young

×

Synaptopodin is upregulated by IL-13 in eosinophilic esophagitis and regulates esophageal epithelial cell motility and barrier integrity
Mark Rochman, … , Julie M. Caldwell, Marc E. Rothenberg
Mark Rochman, … , Julie M. Caldwell, Marc E. Rothenberg
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e96789. https://doi.org/10.1172/jci.insight.96789.
View: Text | PDF

Synaptopodin is upregulated by IL-13 in eosinophilic esophagitis and regulates esophageal epithelial cell motility and barrier integrity

  • Text
  • PDF
Abstract

Eosinophilic esophagitis (EoE) is an allergic inflammatory disease of the esophagus mediated by an IL-13–driven epithelial cell transcriptional program. Herein, we show that the cytoskeletal protein synaptopodin (SYNPO), previously associated with podocytes, is constitutively expressed in esophageal epithelium and induced during allergic inflammation. In addition, we show that the SYNPO gene is transcriptionally and epigenetically regulated by IL-13 in esophageal epithelial cells. SYNPO was expressed in the basal layer of homeostatic esophageal epithelium, colocalized with actin filaments, and expanded into the suprabasal epithelium in EoE patients, where expression was elevated 25-fold compared with control individuals. The expression level of SYNPO in esophageal biopsies correlated with esophageal eosinophil density and was improved following anti–IL-13 treatment in EoE patients. In esophageal epithelial cells, SYNPO gene silencing reduced epithelial motility in a wound healing model, whereas SYNPO overexpression impaired epithelial barrier integrity and reduced esophageal differentiation. Taken together, we demonstrate that SYNPO is induced by IL-13 in vitro and in vivo, is a nonredundant regulator of epithelial cell barrier function and motility, and is likely involved in EoE pathogenesis.

Authors

Mark Rochman, Jared Travers, J. Pablo Abonia, Julie M. Caldwell, Marc E. Rothenberg

×
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts