Soft tissue trauma can cause immune system disturbance and neuropathological invasion, resulting in heterotopic ossification (HO) due to aberrant chondrogenic differentiation of mesenchymal stem cells (MSCs). However, the molecular mechanisms behind the interaction between the immune and nervous systems in promoting HO pathogenesis are unclear. In this study, we found that mast cell-specific deletion attenuated localized tissue inflammation, with marked inhibition of HO endochondral osteogenesis. Likewise, blockage of nerve growth factor (NGF) receptor, known as tropomyosin receptor kinase A (TrkA), led to similar attenuations in tissue inflammation and HO. Moreover, while NGF-TrkA signaling did not directly affect MSCs chondrogenic differentiation, it modulated mast cell activation in traumatic soft tissue. Mechanistically, lipid A in lipopolysaccharide binding to TrkA enhanced NGF-induced TrkA phosphorylation, synergistically stimulating mast cells to release neurotrophin-3 (NT3), thereby promoting MSCs chondrogenic differentiation in situ. Finally, analysis of single-cell datasets and human pathological specimens confirmed the important role of mast cell-mediated neuroinflammation in HO pathogenesis. In conclusion, NGF regulates mast cells in soft tissue trauma, and drives HO progression via paracrine NT3. Targeted early inhibition of mast cells holds substantial promise for treating traumatic HO.
Tao Jiang, Xiang Ao, Xin Xiang, Jie Zhang, Jieyi Cai, Jiaming Fu, Wensheng Zhang, Zhenyu Zheng, Jun Chu, Minjun Huang, Zhongmin Zhang, Liang Wang
We characterized the longitudinal serum protein signatures of women 6 and 10 years after gestational diabetes mellitus (GDM) to identify factors associated with the development of type 2 diabetes mellitus (T2D) and prediabetes in this at-risk post-GDM population, aiming to discover potential biomarkers for early diagnosis and prevention of T2D. Our study identified 75 T2D-associated serum proteins and 23 prediabetes-associated proteins, some of which were validated in an independent T2D cohort. Machine learning (ML) performed on the longitudinal proteomics highlighted protein signatures associated with progression to post-GDM diabetes. We also proposed prognostic biomarker candidates, that were differentially regulated in healthy participants at 6 years postpartum who later progressed to T2D. Our longitudinal study revealed T2D-risk factors for post-GDM populations, who are relatively young and healthy, providing insights for clinical decisions and early lifestyle interventions.
Heaseung Sophia Chung, Lawrence Middleton, Manik Garg, Ventzislava A. Hristova, Rick B. Vega, David J. Baker, Benjamin G. Challis, Dimitrios Vitsios, Sonja Hess, Kristina Wallenius, Agneta Holmäng, Ulrika Andersson-Hall
Urinary neutrophils are a hallmark of urinary tract infection (UTI), yet the mechanisms governing their activation, function, and efficacy in controlling infection remain incompletely understood. Tamm-Horsfall glycoprotein (THP), the most abundant protein in urine, uses terminal sialic acids to bind an inhibitory receptor and dampen neutrophil inflammatory responses. We hypothesized that neutrophil modulation is an integral part of THP-mediated host protection. In a UTI model, THP-deficient mice showed elevated urinary tract bacterial burdens, increased neutrophil recruitment, and more severe tissue histopathological changes compared to WT mice. Furthermore, THP-deficient mice displayed impaired urinary NETosis during UTI. To investigate the impact of THP on NETosis, we coupled in vitro fluorescence-based NET assays, proteomic analyses, and standard and imaging flow cytometry with peripheral human neutrophils. We found that THP increases proteins involved in respiratory chain, neutrophil granules, and chromatin remodeling pathways, enhances NETosis in an ROS-dependent manner, and drives NET-associated morphologic features including nuclear decondensation. These effects were observed only in the presence of a NETosis stimulus and could not be solely replicated with equivalent levels of sialic acid alone. We conclude that THP is a critical regulator of NETosis in the urinary tract, playing a key role in host defense against UTI.
Vicki Mercado-Evans, Holly Branthoover, Claude Chew, Camille Serchejian, Alexander B. Saltzman, Marlyd E. Mejia, Jacob J. Zulk, Ingrid Cornax, Victor Nizet, Kathryn A. Patras
Abstract: Both CO2 retention, or hypercapnia, and skeletal muscle dysfunction predict higher mortality in critically ill patients. Mechanistically, muscle injury and reduced myogenesis contribute to critical illness myopathy, and while hypercapnia causes muscle wasting, no research has been conducted on hypercapnia-driven dysfunctional myogenesis in vivo. Autophagy flux regulates myogenesis by supporting muscle stem cell -satellite cell- activation, and previous data suggests that hypercapnia inhibits autophagy. We tested whether hypercapnia worsens satellite cell autophagy flux and myogenic potential, and if autophagy induction reverses these deficits. Satellite cell transplantation and lineage tracing experiments showed that hypercapnia undermines satellite cells activation, replication, and myogenic capacity. Bulk and single cell sequencing analyses indicated that hypercapnia disrupts autophagy, senescence, and other satellite cells programs. Autophagy activation was reduced in hypercapnic cultured myoblasts, and autophagy genetic knockdown phenocopied these changes in vitro. Rapamycin stimulation led to AMPK activation and downregulation of the mTOR pathway, which are both associated with accelerated autophagy flux and cell replication. Moreover, hypercapnic mice receiving rapamycin showed improved satellite cells autophagy flux, activation, replication rate, and post transplantation myogenic capacity. In conclusion, we have shown that hypercapnia interferes with satellite cell activation, autophagy flux and myogenesis, and systemic rapamycin administration improved these outcomes.
Joseph Balnis, Emily L. Jackson, Lisa A. Drake, Diane V. Singer, Ramon Bossardi Ramos, Harold A. Singer, Ariel Jaitovich.
Macrophage plays a crucial role in promoting perfusion recovery and revascularization after ischemia through anti-inflammatory polarization, a process essential for the treatment of peripheral arterial disease (PAD). Mitochondrial dynamics, particularly regulated by the fission protein DRP1, are closely linked to macrophage metabolism and inflammation. However, the role of DRP1 in reparative neovascularization remains unexplored. Here we show that DRP1 expression was increased in F4/80+ macrophages within ischemic muscle at day 3 after hindlimb ischemia (HLI), an animal model of PAD. Mice lacking Drp1 in myeloid cells exhibited impaired limb perfusion recovery, angiogenesis and muscle regeneration post-HLI. These effects were associated with increased pro-inflammatory M1-like macrophages, p-NFkB and TNFα, and reduced anti-inflammatory M2-like macrophages and p-AMPK in ischemic muscle of myeloid Drp1–/– mice. In vitro, Drp1-deficient macrophages under hypoxia serum starvation (HSS), an in vitro PAD model, demonstrated enhanced glycolysis via reducing p-AMPK as well as mitochondrial dysfunction, and excessive mitochondrial ROS production, resulting in increased pro-inflammatory M1-gene and reduced anti-inflammatory M2-gene expression. Conditioned media from HSS-treated Drp1–/– macrophages exhibited increased pro-inflammatory cytokine secretion, leading to suppressed angiogenesis in endothelial cells. Thus, macrophage DRP1 deficiency under ischemia drives pro-inflammatory metabolic reprogramming and macrophage polarization, limiting revascularization in experimental PAD.
Shikha Yadav, Vijay C. Ganta, Sudhahar Varadarajan, Vy Ong, Yang Shi, Archita Das, Dipankar Ash, Sheela Nagarkoti, Malgorzata McMenamin, Stephanie Kelley, Tohru Fukai, Masuko Ushio-Fukai
Diabetic kidney disease (DKD) is the leading cause of chronic renal pathology. Understanding the molecular underpinnings of DKD is critical to designing tailored therapeutic approaches. Here we focused on sex differences and the contribution of aging towards the progression of DKD. To explore these questions, we utilized young (12 weeks old) and aged (approximately 50 weeks old) type 2 diabetic nephropathy (T2DN) rats. We revealed that the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway was upregulated in T2DN rats compared to non-diabetic Wistar rats and in type 2 diabetic human kidneys. The activation of the cGAS-STING signaling pathway exhibited distinct protein expression profiles between male and female T2DN rats, with these differences becoming more pronounced with aging. RNA-Seq analysis of the kidney cortex in both male and female T2DN rats, at both younger and older ages, revealed several key molecules, highlighting crucial genes within the cGAS-STING pathway. Thus, our study delved deep into understanding the intricate sexual differences in the development and progression of DKD and proposed the cGAS-STING pathway as an essential contributor to disease development.
Sherif Khedr, Lashodya V. Dissanayake, Ammar J. Alsheikh, Adrian Zietara, Denisha R. Spires, Romica Kerketta, Angela J. Mathison, Raul Urrutia, Oleg Palygin, Alexander Staruschenko
The cytokine interleukin-18 (IL-18) has immunostimulatory effects but is negatively regulated by a secreted binding protein, IL-18BP, that limits IL-18’s anti-cancer efficacy. A “decoy-resistant” form of IL-18 (DR-18), that avoids sequestration by IL-18BP while maintaining its immunostimulatory potential, has recently been developed. Here, we investigated the therapeutic potential of DR-18 in renal cell carcinoma (RCC). Using pan-tumor transcriptomic data, we found that clear cell RCC had among the highest expression of IL-18 receptor subunits and IL18BP of tumor types in the database. In samples from RCC patients treated with immune checkpoint inhibitors, IL-18BP protein expression increased in the tumor microenvironment and circulating in plasma in non-responding patients and decreased in the majority of responding patients. We used immunocompetent RCC murine models to assess the efficacy of DR-18 in combination with single- and dual-agent anti-PD-1 and anti-CTLA-4. In contrast to preclinical models of other tumor types, in RCC models DR-18 enhanced the activity of anti-CTLA-4 but not anti-PD-1 treatment. This activity correlated with intra-tumoral enrichment and clonal expansion of effector CD8+ T cells, decreased regulatory T cell levels, and enrichment of pro-inflammatory, anti-tumor myeloid cell populations. Our findings support further clinical investigation of the combination of DR-18 and anti-CTLA-4 in RCC.
David A. Schoenfeld, Dijana Djureinovic, David G. Su, Lin Zhang, Benjamin Y. Lu, Larisa Kamga, Jacqueline E. Mann, John D. Huck, Michael Hurwitz, David A. Braun, Lucia Jilaveanu, Aaron M. Ring, Harriet M. Kluger
The degeneration of retinal ganglion cells (RGC) due to mitochondrial dysfunctions manifests optic neuropathy. However, the molecular components of RGC linked to optic neuropathy manifestations remain largely unknown. Here, we identified a novel optic atrophy-causative CRYAB gene encoding a highly conserved major lens protein acting as mitochondrial chaperone and possessing anti-apoptotic activities. The heterozygous CRYAB mutation (c.313G>A, p. Glu105Lys) was cosegregated with autosomal dominant inheritance of optic atrophy in 3 Chinese families. The p.E105K mutation altered the structure and function of CRYAB, including decreased stability, reduced formation of oligomers and decreasing chaperone activity. Coimmunoprecipitation indicated that the p.E105K mutation reduced the interaction of CRYAB with apoptosis-associated cytochrome c and VDAC. The cell lines carrying the p.E105K mutation displayed promoting apoptosis, defective assembly, stability and activities of oxidative phosphorylation system and imbalance of mitochondrial dynamics. Involvement of CRYAB in optic atrophy was confirmed by phenotypic evaluations of Cryabp.E105K knock-in mice. These mutant mice exhibited ocular lesions including changing intra-retina layers, degeneration of RGCs, photoreceptor deficits and abnormal retinal vasculature. Furthermore, Cryab-deficient mice displayed elevated apoptosis and mitochondrial dysfunctions. Our findings provide new insight of pathophysiology of optic atrophy arising from RGC degeneration caused by CRYAB deficiency-induced elevated apoptosis and mitochondrial dysfunctions.
Chenghui Wang, Liyao Zhang, Zhipeng Nie, Min Liang, Hanqing Liu, Qiuzi Yi, Chunyan Wang, Cheng Ai, Juanjuan Zhang, Yinglong Gao, Yanchun Ji, Min-Xin Guan
CD4+ T helper 1 (TH1) cells coordinate adaptive immune responses to intracellular pathogens, including viruses. Key to this function is the ability of TH1 cells to migrate within secondary lymphoid tissues, as well as to sites of inflammation, which relies on signals received through the chemokine receptor CXCR3. CXCR3 expression is driven by the TH1 lineage-defining transcription factor T-bet, and the cytokine-responsive Signal Transducer and Activator of Transcription (STAT) family members STAT1 and STAT4. Here, we identify the Ikaros zinc finger (IkZF) transcription factor Aiolos (Ikzf3) as an additional positive regulator of CXCR3 both in vitro and in vivo using a murine model of influenza virus infection. Mechanistically, we find that Aiolos-deficient CD4+ T cells exhibit decreased expression of key components of the IFNγ/STAT1 signaling pathway, including JAK2 and STAT1. Consequently, Aiolos deficiency results in decreased levels of STAT1 tyrosine phosphorylation and reduced STAT1 enrichment at the Cxcr3 promoter. We further find that Aiolos and STAT1 form a positive feedback loop via reciprocal regulation of each other downstream of IFNγ signaling. Collectively, our study demonstrates that Aiolos promotes CXCR3 expression on TH1 cells by propagating the IFNγ/STAT1 cytokine signaling pathway.
Melissa R. Leonard, Devin M. Jones, Kaitlin A. Read, Srijana Pokhrel, Jasmine A. Tuazon, Robert T. Warren, Jacob S. Yount, Kenneth J. Oestreich
Hepatic macrophages and regulatory T cells (Tregs) play an important role in the maintenance of liver immune homeostasis, but the mechanism by which hepatic macrophages regulate Tregs in acute liver injury remains largely unknown. Here, we found that the hepatic Treg proportion and β-catenin expression in hepatic macrophages were associated with acetaminophen (APAP) and D-galactosamine (D-GalN)/ lipopolysaccharide (LPS)-induced acute liver injury. Interestingly, β-catenin was markedly upregulated only in infiltrating macrophages, but not in resident Kupffer cells. Myeloid-specific β-catenin knockout mice showed an increased inflammatory cell infiltration and hepatocyte apoptosis. Moreover, myeloid β-catenin deficiency decreased the hepatic Treg proportion in the injured liver. Mechanistically, in vitro co-culture experiments revealed that macrophage β-catenin modulated its exosome composition, and influenced Treg differentiation. Using mass spectrometry-based proteomics, we identified that macrophage β-catenin activation increased the level of exosomal α-SNAP, which in turn promoted Treg differentiation. Overall, our findings demonstrated a molecular mechanism that macrophage β-catenin regulated the Treg proportion in the liver by enhancing the expression of exosomal α-SNAP, providing insights into the pathophysiology of acute liver injury.
Ruobin Zong, Yujie Liu, Mengya Zhang, Buwei Liu, Wei Zhang, Hankun Hu, Changyong Li
No posts were found with this tag.