Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Research

  • 2,146 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 197
  • 198
  • 199
  • …
  • 214
  • 215
  • Next →
DNA replication in progenitor cells and epithelial regeneration after lung injury requires the oncoprotein MDM2
Shilpa Singh, Catherine A. Vaughan, Christopher Rabender, Ross Mikkelsen, Sumitra Deb, Swati Palit Deb
Shilpa Singh, Catherine A. Vaughan, Christopher Rabender, Ross Mikkelsen, Sumitra Deb, Swati Palit Deb
View: Text | PDF

DNA replication in progenitor cells and epithelial regeneration after lung injury requires the oncoprotein MDM2

  • Text
  • PDF
Abstract

Depletion of epithelial cells after lung injury prompts proliferation and epithelial-mesenchymal transition (EMT) of progenitor cells, which repopulates the lost epithelial layer. To investigate cell proliferative function of human oncoprotein MDM2, we generated mouse models targeting human MDM2 expression in either lung Club or alveolar cells after doxycycline treatment. We report that MDM2 expression in lung Club or alveolar cells activates DNA replication specifically in lung progenitor cells only after chemical- or radiation-induced lung injury irrespective of their p53 status. Activation of DNA replication by MDM2 triggered by injury leads to the proliferation of lung progenitor cells and restoration of the lost epithelial layers. Mouse lung with no mdm2 allele loses their ability to replicate DNA, whereas, loss of one mdm2 allele compromises this function, demonstrating the requirement of endogenous MDM2. We show that the p53-independent ability of MDM2 to activate Akt signaling is essential for initiating DNA replication in lung progenitor cells. Furthermore, MDM2 activates the Notch signaling pathway and expression of EMT markers indicative of epithelial regeneration. This is the first report demonstrating direct p53-independent participation of MDM2 in progenitor cell proliferation and epithelial repair after lung injury, distinct from a p53-degrading anti-apoptotic effect preventing injury.

Authors

Shilpa Singh, Catherine A. Vaughan, Christopher Rabender, Ross Mikkelsen, Sumitra Deb, Swati Palit Deb

×

IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colon cancer
Qiong Li, Yali Chen, Daoxiang Zhang, Julie Grossman, Lin Li, Namrata Khurana, Hongmei Jiang, Patrick Grierson, John Herndon, David G. DeNardo, Grant A. Challen, Jingxia Liu, Marianna B. Ruzinova, Ryan C. Fields, Kian-Huat Lim
Qiong Li, Yali Chen, Daoxiang Zhang, Julie Grossman, Lin Li, Namrata Khurana, Hongmei Jiang, Patrick Grierson, John Herndon, David G. DeNardo, Grant A. Challen, Jingxia Liu, Marianna B. Ruzinova, Ryan C. Fields, Kian-Huat Lim
View: Text | PDF

IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colon cancer

  • Text
  • PDF
Abstract

Aberrant activation of the NF-κB transcription factors underlies chemoresistance in various cancer types including colorectal cancer (CRC). Targeting the activating mechanisms, particularly with inhibitors to the upstream IκB kinase (IKK) complex, is a promising strategy to augment the effect of chemotherapy. However, clinical success has been limited largely due to low specificity and toxicities of tested compounds. In solid cancers, the IKK kinases is driven predominantly by the Toll-like/Interlekin-1 receptor family members, which signal through the Interleukin-1 Receptor-Associated Kinases (IRAKs), with isoform 4 (or IRAK4) being the most critical. The pathogenic role and therapeutic value of IRAK4 in CRC has not been investigated. We found that IRAK4 inhibition significantly abrogates colitis-induced neoplasm in APCMin/+ mice, and bone marrow transplant experiments showed an essential role of IRAK4 in immune cells during neoplastic progression. Chemotherapy significantly enhances IRAK4 and NF-κB activity in CRC cells through upregulating TLR9 expression, which can in turn be suppressed by IRAK4 and IKK inhibitors, suggesting a feedforward pathway that protects CRC cells from chemotherapy. Lastly, increased tumor phospho-IRAK4 staining or IRAK4 mRNA expression are associated with significantly worse survival in CRC patients. Our results support targeting IRAK4 to improve the effects of chemotherapy and outcomes in CRC.

Authors

Qiong Li, Yali Chen, Daoxiang Zhang, Julie Grossman, Lin Li, Namrata Khurana, Hongmei Jiang, Patrick Grierson, John Herndon, David G. DeNardo, Grant A. Challen, Jingxia Liu, Marianna B. Ruzinova, Ryan C. Fields, Kian-Huat Lim

×

CD83 orchestrates immunity towards self and non-self in dendritic cells
Andreas B. Wild, Lena Krzyzak, Katrin Peckert, Lena Stich, Christine Kuhnt, Alina Butterhof, Christine Seitz, Jochen Mattner, Niklas Grüner, Maximilian Gänsbauer, Martin Purtak, Didier Soulat, Thomas H. Winkler, Lars Nitschke, Elisabeth Zinser, Alexander Steinkasserer
Andreas B. Wild, Lena Krzyzak, Katrin Peckert, Lena Stich, Christine Kuhnt, Alina Butterhof, Christine Seitz, Jochen Mattner, Niklas Grüner, Maximilian Gänsbauer, Martin Purtak, Didier Soulat, Thomas H. Winkler, Lars Nitschke, Elisabeth Zinser, Alexander Steinkasserer
View: Text | PDF

CD83 orchestrates immunity towards self and non-self in dendritic cells

  • Text
  • PDF
Abstract

Dendritic cells (DCs) are crucial to balance protective immunity and autoimmune inflammatory processes. Expression of CD83 is a well-established marker for mature DCs although its physiological role is still not completely understood. Using a DC-specific CD83 conditional KO mouse (CD83ΔDC) we provide new insights into the function of CD83 within this cell type. Interestingly, CD83-deficient DCs produced drastically increased IL-2 levels and displayed higher expression of the co-stimulatory molecules CD25 and OX40L, which causes superior induction of antigen-specific T cell responses and compromises Treg suppressive functions. This also directly translates into accelerated immune responses in vivo. Upon Salmonella typhimurium and Listeria monocytogenes infection, CD83ΔDC mice cleared both pathogens more efficiently, and CD83-deficient DCs expressed increased IL-12 levels after bacterial encounter. Using the experimental autoimmune encephalomyelitis (EAE) model, autoimmune inflammation was dramatically aggravated in CD83ΔDC mice, while resolution of inflammation was strongly reduced. This phenotype was associated with increased cell influx into the CNS accompanied by elevated Th17 cell numbers. Concomitantly, CD83ΔDC mice had reduced Treg numbers in peripheral lymphoid organs. In summary, we show that CD83 ablation on DCs results in enhanced immune responses by dysregulating tolerance mechanisms and thereby impairing resolution of inflammation, which also demonstrates high clinical relevance.

Authors

Andreas B. Wild, Lena Krzyzak, Katrin Peckert, Lena Stich, Christine Kuhnt, Alina Butterhof, Christine Seitz, Jochen Mattner, Niklas Grüner, Maximilian Gänsbauer, Martin Purtak, Didier Soulat, Thomas H. Winkler, Lars Nitschke, Elisabeth Zinser, Alexander Steinkasserer

×

Mss51 deletion enhances muscle metabolism and glucose homeostasis in mice
Yazmin I. Rovira Gonzalez, Adam L, Moyer, Nicolas J. LeTexier, August D. Bratti, Siyuan Feng, Congshan Sun, Ting Liu, Jyothi Mula, Pankhuri Jha, Shama R. Iyer, Richard M. Lovering, Brian O'Rourke, Hye Lim Noh, Sujin Suk, Jason K. Kim, George K.E. Umanah, Kathryn R. Wagner
Yazmin I. Rovira Gonzalez, Adam L, Moyer, Nicolas J. LeTexier, August D. Bratti, Siyuan Feng, Congshan Sun, Ting Liu, Jyothi Mula, Pankhuri Jha, Shama R. Iyer, Richard M. Lovering, Brian O'Rourke, Hye Lim Noh, Sujin Suk, Jason K. Kim, George K.E. Umanah, Kathryn R. Wagner
View: Text | PDF

Mss51 deletion enhances muscle metabolism and glucose homeostasis in mice

  • Text
  • PDF
Abstract

Myostatin is a negative regulator of muscle growth and metabolism and its inhibition in mice improves insulin sensitivity, increases glucose uptake into skeletal muscle, and decreases total body fat. A recently described mammalian protein called Mss51 is significantly downregulated with myostatin inhibition. In vitro disruption of Mss51 results in increased levels of ATP, β-oxidation, glycolysis and oxidative phosphorylation. To determine the in vivo biological function of Mss51 in mice, we disrupted the Mss51 gene by CRISPR/Cas9 and found that Mss51 KO mice have normal muscle weights and fiber-type distribution but reduced fat pads. Myofibers isolated from Mss51 KO mice showed an increased oxygen consumption rate compared to WT controls, indicating an accelerated rate of skeletal muscle metabolism. The expression of genes related to oxidative phosphorylation and fatty acid β-oxidation were enhanced in skeletal muscle of Mss51 KO mice compared to that of WT mice. We found that mice lacking Mss51 and challenged with a high fat diet were resistant to diet-induced weight gain, had increased whole-body glucose turnover and glycolysis rate, and increased systemic insulin sensitivity and fatty acid β-oxidation. These findings demonstrate that Mss51 modulates skeletal muscle mitochondrial respiration and regulates whole-body glucose and fatty acid metabolism, making it a potential target for obesity and diabetes.

Authors

Yazmin I. Rovira Gonzalez, Adam L, Moyer, Nicolas J. LeTexier, August D. Bratti, Siyuan Feng, Congshan Sun, Ting Liu, Jyothi Mula, Pankhuri Jha, Shama R. Iyer, Richard M. Lovering, Brian O'Rourke, Hye Lim Noh, Sujin Suk, Jason K. Kim, George K.E. Umanah, Kathryn R. Wagner

×

miR-486 is modulated by stretch and increases ventricular growth
Stephan Lange, Indroneal Banerjee, Katrina Carrion, Ricardo Serrano, Louisa Habich, Rebecca Kameny, Luisa Lengenfelder, Nancy Dalton, Rudolph Meili, Emma Börgeson, Kirk Peterson, Marco Ricci, Joy Lincoln, Majid Ghassemian, Jeffrey R. Fineman, Juan C. del Álamo, Vishal Nigam
Stephan Lange, Indroneal Banerjee, Katrina Carrion, Ricardo Serrano, Louisa Habich, Rebecca Kameny, Luisa Lengenfelder, Nancy Dalton, Rudolph Meili, Emma Börgeson, Kirk Peterson, Marco Ricci, Joy Lincoln, Majid Ghassemian, Jeffrey R. Fineman, Juan C. del Álamo, Vishal Nigam
View: Text | PDF

miR-486 is modulated by stretch and increases ventricular growth

  • Text
  • PDF
Abstract

Perturbations in biomechanical stimuli during cardiac development contribute to congenital cardiac defects such as Hypoplastic Left Heart Syndrome (HLHS). This study sought to identify stretch-responsive pathways involved in cardiac development. microRNA (miRNA)-Sequencing identified miR-486 as being increased in cardiomyocytes exposed to cyclic stretch in vitro (63%, p<0.002). The right ventricles of HLHS patients experience increased stretch and have a trend towards higher miR-486 levels 4.9-fold (p=0.08). Sheep RVs dilated from excessive pulmonary blood flow have 60% more miR-486 vs. control RVs (p<0.05). The left ventricles of newborn mice treated with miR-486 mimic are 16.9%-24.6% larger (p<0.01) and display 2.48 fold increase in cardiomyocyte proliferation (p<0.01). miR-486 treatment decreases FoxO1 and Smad signaling, while increasing the protein levels of Stat1. Stat1 associates with Gata4 and Serum Response Factor (Srf), two key cardiac transcription factors whose protein levels increase in response to miR-486. This is the first report of a stretch-responsive miRNA that increases the growth of the ventricle in vivo.

Authors

Stephan Lange, Indroneal Banerjee, Katrina Carrion, Ricardo Serrano, Louisa Habich, Rebecca Kameny, Luisa Lengenfelder, Nancy Dalton, Rudolph Meili, Emma Börgeson, Kirk Peterson, Marco Ricci, Joy Lincoln, Majid Ghassemian, Jeffrey R. Fineman, Juan C. del Álamo, Vishal Nigam

×

Coronary disease is not associated with robust alterations in inflammatory gene expression in human epicardial fat
Timothy P. Fitzgibbons, Nancy Lee, Khanh-Van Tran, Sara Nicoloro, Mark Kelly, Stanley K.C. Tam, Michael P. Czech
Timothy P. Fitzgibbons, Nancy Lee, Khanh-Van Tran, Sara Nicoloro, Mark Kelly, Stanley K.C. Tam, Michael P. Czech
View: Text | PDF

Coronary disease is not associated with robust alterations in inflammatory gene expression in human epicardial fat

  • Text
  • PDF
Abstract

Background: Epicardial adipose tissue (EAT) is the visceral fat depot of the heart. Inflammation of EAT is thought to contribute to coronary artery disease (CAD). Therefore, we hypothesized that the EAT of patients with CAD would have increased inflammatory gene expression compared to controls without CAD. Methods: 26 patients referred for cardiac surgery with (n=13) or without CAD (n=13) were consented. Samples of EAT and subcutaneous adipose tissue (SAT) were obtained at the time of surgery. Gene expression analysis was performed using Affymetrix Human Gene 1.0 ST arrays. Differential regulation was defined as a 1.5 fold change (ANOVA p<0.05). Results: When comparing SAT and EAT of controls, 693 genes were differentially expressed. 805 genes were differentially expressed between SAT and EAT in cases. Expression of 326 genes was different between EAT of cases and controls; expression of 14 genes was increased in cases, while 312 were increased in controls. qRT-PCR confirmed that there was no difference in expression of major inflammatory genes (CCL2, CCR2, TNFα, IL6, IL8, PAI1) between cases and controls. Immunohistochemistry demonstrated that there were more macrophages in EAT than SAT, but that there was no difference in the number or activation state between cases and controls. Conclusion: In contrast to prior studies, we did not find increased inflammatory gene expression in the EAT of patients with CAD in comparison to controls without CAD. We conclude that specific adipose tissue organ, rather than CAD status, is responsible for the majority of differential gene expression.

Authors

Timothy P. Fitzgibbons, Nancy Lee, Khanh-Van Tran, Sara Nicoloro, Mark Kelly, Stanley K.C. Tam, Michael P. Czech

×

Antisense regulation of atrial natriuretic peptide expression
Selvi Celik, Mardjaneh Karbalaei Sadegh, Michael Morley, Carolina Roselli, Patrick T. Ellinor, Thomas Cappola, J. Gustav Smith, Olof Gidlof
Selvi Celik, Mardjaneh Karbalaei Sadegh, Michael Morley, Carolina Roselli, Patrick T. Ellinor, Thomas Cappola, J. Gustav Smith, Olof Gidlof
View: Text | PDF

Antisense regulation of atrial natriuretic peptide expression

  • Text
  • PDF
Abstract

The cardiac hormone atrial natriuretic peptide (ANP) is a central regulator of blood volume and a therapeutic target in hypertension and heart failure. Enhanced ANP activity in such conditions through inhibition of the degradative enzyme neprilysin has shown clinical efficacy, but is complicated by consequences from simultaneous accumulation of a heterogeneous array of other hormones. Targets for specific ANP enhancement have not been available. Here, we describe a cis-acting antisense transcript (NPPA-AS1) which negatively regulates ANP expression in human cardiomyocytes. We show that NPPA-AS1 regulates ANP expression via facilitating interaction of the NPPA repressor REST (RE1-silencing transcription factor) binding to its promoter, rather than base-pairing with ANP mRNA. Expression of ANP mRNA and NPPA-AS1 was increased and correlated in isolated strained human cardiomyocytes and in hearts from patients with advanced heart failure. Further, inhibition of NPPA-AS1 in vitro and in vivo resulted in increased myocardial expression of ANP, increased circulating ANP, increased renal cGMP and lower blood pressure. The effects of NPPA-AS1 inhibition on NPPA expression in human cardiomyocytes were further marked under cell-strain conditions. Collectively, these results implicate the antisense transcript NPPA-AS1 as part of a physiologic self-regulatory ANP circuit and a viable target for specific ANP augmentation.

Authors

Selvi Celik, Mardjaneh Karbalaei Sadegh, Michael Morley, Carolina Roselli, Patrick T. Ellinor, Thomas Cappola, J. Gustav Smith, Olof Gidlof

×

Region specific parasympathetic nerve remodeling in the left atrium contributes to creation of a vulnerable substrate for atrial fibrillation
Georg Gussak, Anna Pfenniger, Lisa M. Wren, Mehul Gilani, Wenwei Zhang, Shin Yoo, David A. Johnson, Amy Burrell, Brandon Benefield, Gabriel M. Knight, Bradley P. Knight, Rod Passman, Jeffrey J. Goldberger, Gary Aistrup, J. Andrew Wasserstrom, Yohannes Shiferaw, Rishi Arora
Georg Gussak, Anna Pfenniger, Lisa M. Wren, Mehul Gilani, Wenwei Zhang, Shin Yoo, David A. Johnson, Amy Burrell, Brandon Benefield, Gabriel M. Knight, Bradley P. Knight, Rod Passman, Jeffrey J. Goldberger, Gary Aistrup, J. Andrew Wasserstrom, Yohannes Shiferaw, Rishi Arora
View: Text | PDF

Region specific parasympathetic nerve remodeling in the left atrium contributes to creation of a vulnerable substrate for atrial fibrillation

  • Text
  • PDF
Abstract

Atrial fibrillation (AF) is the most common heart rhythm disorder and a major cause of stroke. Unfortunately, current therapies for AF are suboptimal, largely because the molecular mechanisms underlying AF are poorly understood. Since the autonomic nervous system is thought to increase vulnerability to AF, we investigated in a rapid atrial pacing (RAP) canine model the anatomic and electrophysiological characteristics of autonomic remodeling in different regions of the left atrium. RAP led to marked hypertrophy of parent nerve bundles in the posterior left atrium (PLA), resulting in a global increase in parasympathetic and sympathetic innervation throughout the left atrium. Parasympathetic fibers were more heterogeneously distributed in the PLA when compared to other left atrial regions; this led to greater fractionation and disorganization of AF electrograms in the PLA. Computational modeling revealed that heterogeneously distributed parasympathetic activity exacerbates sympathetic substrate for wave break and reentry. We further discovered that levels of Nerve Growth Factor (NGF) were greatest in the left atrial appendage (LAA), where AF was most organized. Preferential NGF release by the LAA - likely a direct function of frequency and regularity of atrial stimulation - may have important implications for creation of a vulnerable AF substrate.

Authors

Georg Gussak, Anna Pfenniger, Lisa M. Wren, Mehul Gilani, Wenwei Zhang, Shin Yoo, David A. Johnson, Amy Burrell, Brandon Benefield, Gabriel M. Knight, Bradley P. Knight, Rod Passman, Jeffrey J. Goldberger, Gary Aistrup, J. Andrew Wasserstrom, Yohannes Shiferaw, Rishi Arora

×

Molecular determinants of response to high dose androgen therapy in prostate cancer
Michael D. Nyquist, Alexandra Corella, Osama Mohamad, Ilsa Coleman, Arja Kaipainen, Daniel A. Kuppers, Jared M. Lucas, Patrick J. Paddison, Stephen R. Plymate, Peter S. Nelson, Elahe A. Mostaghel
Michael D. Nyquist, Alexandra Corella, Osama Mohamad, Ilsa Coleman, Arja Kaipainen, Daniel A. Kuppers, Jared M. Lucas, Patrick J. Paddison, Stephen R. Plymate, Peter S. Nelson, Elahe A. Mostaghel
View: Text | PDF

Molecular determinants of response to high dose androgen therapy in prostate cancer

  • Text
  • PDF
Abstract

Clinical trials of high-dose androgen therapy for prostate cancer have shown promising efficacy but are limited by lack of criteria to identify likely responders. To elucidate factors that govern the growth-repressive effects of high-dose androgens we applied an unbiased integrative approach utilizing genetic screens and transcriptional profiling of prostate cancer cells with or without demonstrated phenotypic sensitivity to androgen-mediated growth repression. Through this comprehensive analysis, we identified genetic events and related signaling networks that determine the response to both high-dose androgen and androgen withdrawal. We applied these findings to develop a gene signature that may serve as an early indicator of treatment response and identify men with tumors amenable to high dose androgen therapy.

Authors

Michael D. Nyquist, Alexandra Corella, Osama Mohamad, Ilsa Coleman, Arja Kaipainen, Daniel A. Kuppers, Jared M. Lucas, Patrick J. Paddison, Stephen R. Plymate, Peter S. Nelson, Elahe A. Mostaghel

×

PD-L1 and calcitriol dependent liposomal antigen-specific regulation of systemic inflammatory autoimmune disease
Ryan Galea, Hendrik Nel, Meghna Talekar, Xiao Liu, Joshua D. Ooi, Megan Huynh, Sara Hadjigol, Kate J. Robson, Yi Tian Ting, Suzanne Cole, Karyn Cochlin, Shannon Hitchcock, Bijun Zeng, Suman Yekollu, Martine Boks, Natalie Goh, Helen Roberts, Jamie Rossjohn, Hugh H. Reid, Ben J. Boyd, Ravi Malaviya, David J. Shealy, Daniel G. Baker, Loui Madakamutil, A. Richard Kitching, Brendan J. O’Sullivan, Ranjeny Thomas
Ryan Galea, Hendrik Nel, Meghna Talekar, Xiao Liu, Joshua D. Ooi, Megan Huynh, Sara Hadjigol, Kate J. Robson, Yi Tian Ting, Suzanne Cole, Karyn Cochlin, Shannon Hitchcock, Bijun Zeng, Suman Yekollu, Martine Boks, Natalie Goh, Helen Roberts, Jamie Rossjohn, Hugh H. Reid, Ben J. Boyd, Ravi Malaviya, David J. Shealy, Daniel G. Baker, Loui Madakamutil, A. Richard Kitching, Brendan J. O’Sullivan, Ranjeny Thomas
View: Text | PDF

PD-L1 and calcitriol dependent liposomal antigen-specific regulation of systemic inflammatory autoimmune disease

  • Text
  • PDF
Abstract

Autoimmune diseases resulting from MHC class II-restricted autoantigen-specific T cell immunity include the systemic inflammatory autoimmune conditions, rheumatoid arthritis and vasculitis. While currently treated with broad-acting immunosuppressive drugs, a preferable strategy is to regulate antigen-specific effector T cells (Teff) to restore tolerance, by exploiting dendritic cell (DC) antigen presentation. We targeted draining lymph node (dLN) phagocytic DCs using liposomes encapsulating 1α,25-dihydroxyvitamin D3 (calcitriol) and antigenic peptide, to elucidate mechanisms of tolerance employed by DCs and responding T cells under resting and immunized conditions. PD-L1 expression was upregulated in dLN of immunized relative to naïve mice. Subcutaneous administration of liposomes encapsulating OVA323-339 and calcitriol targeted dLN PD-L1hi DCs of immunized mice and reduced their MHC class II expression. OVA323-339-calcitriol liposomes suppressed expansion, differentiation and function of Teff and induced Foxp3+ and IL-10+ peripheral (p)Treg in an antigen-specific manner, which was dependent on PD-L1. Peptide-calcitriol liposomes modulated CD40 expression by human DCs, and promoted Treg induction in vitro. Liposomes encapsulating calcitriol and disease-associated peptides suppressed the severity of rheumatoid arthritis and Goodpasture’s vasculitis models with suppression of antigen-specific memory T cell differentiation and function. Accordingly, peptide-calcitriol liposomes leverage DC PD-L1 for antigen-specific T cell regulation and induce antigen-specific tolerance in inflammatory autoimmune diseases.

Authors

Ryan Galea, Hendrik Nel, Meghna Talekar, Xiao Liu, Joshua D. Ooi, Megan Huynh, Sara Hadjigol, Kate J. Robson, Yi Tian Ting, Suzanne Cole, Karyn Cochlin, Shannon Hitchcock, Bijun Zeng, Suman Yekollu, Martine Boks, Natalie Goh, Helen Roberts, Jamie Rossjohn, Hugh H. Reid, Ben J. Boyd, Ravi Malaviya, David J. Shealy, Daniel G. Baker, Loui Madakamutil, A. Richard Kitching, Brendan J. O’Sullivan, Ranjeny Thomas

×
  • ← Previous
  • 1
  • 2
  • …
  • 197
  • 198
  • 199
  • …
  • 214
  • 215
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts