Mottled skin pigmentation and solar lentigines from chronic photodamage with aging involves complex interactions between keratinocytes and melanocytes. However, the precise signaling mechanisms that could serve as therapeutic targets are unclear. Herein, we report that expression of nuclear factor erythroid 2-related factor 2 (NRF2), which regulates reduction–oxidation reactions, is altered in solar lentigines and photodamaged skin. Moreover, mottled skin pigmentation in humans could be treated with topical application of the NRF2 inducer sulforaphane (SF). Similarly, ultraviolet (UV) light-induced pigmentation of wildtype mouse ear skin could be treated or prevented with SF treatment. Conversely, SF treatment was unable to reduce UV-induced ear skin pigmentation in mice deficient in NRF2 or in mice with keratinocyte-specific conditional deletion of IL-6Rα. Taken together, NRF2 and IL-6Rα signaling are involved in the pathogenesis of UV-induced skin pigmentation and specific enhancement of NRF2-signaling could represent a potential therapeutic target.
Michelle L. Kerns, Robert J. Miller, Momina Mazhar, Angel S. Byrd, Nathan K. Archer, Bret L. Pinsker, Lance S. Lew, Carly A. Dillen, Ruizhi Wang, Lloyd S. Miller, Anna L. Chien, Sewon Kang
Chronic kidney disease (CKD) induces the failure of arteriovenous fistulas (AVF) and promotes the differentiation of vascular adventitial GLI1+ mesenchymal stem cells (GMCs). However, the roles of GMCs in forming neointima in AVFs remains unknown. GMCs isolated from CKD mice showed increased potential capacity of differentiation into myofibroblast-like cells. Increased activation of expression of PDGFRA and hedgehog (HH) signaling were detected in adventitial cells of AVFs from ESRD patients and CKD mice. PDGFRA was translocated and accumulated in early endosome when hedgehog signaling stimulates was activated. In endosome, PDGFRA mediated activation of TGFB1/SMAD signaling promoting GMCs differentiation into myofibroblast, extracellular matrix deposition, and vascular fibrosis. These responses resulted in neointima formation and AVF failure. Knockout (KO) of Pdgfra or inhibition of HH signaling in GMCs suppressed the differentiation of GMCs into myofibroblasts. In vivo, specific KO of Pdgfra inhibited GMC activation and vascular fibrosis, resulting in suppression of neointima formation and improvement of AVF patency despite CKD. Our findings could yield strategies for maintaining AVF functions.
Ke Song, Ying Qing, Qunying Guo, Eric K. Peden, Changyi Chen, William E. Mitch, Luan Truong, Jizhong Cheng
Actin-associated nonmuscle myosin II (NM2) motor proteins play critical roles in a myriad of cellular functions including endocytosis and organelle transport pathways. Cell type-specific expression and unique subcellular localization of the NM2 proteins, encoded by the Myh9 and Myh10 genes, in the mouse kidney tubules led us to hypothesize that these proteins have specialized functional roles within the renal epithelium. Inducible, conditional knockout (cKO) of Myh9 and Myh10 in the renal tubules of adult mice resulted in progressive kidney disease. Prior to overt renal tubular injury, we observed intracellular accumulation of the GPI-anchored protein uromodulin and gradual loss of Na+ K+ 2Cl- cotransporter from the apical membrane of the thick ascending limb (TAL) epithelia. The UMOD accumulation coincided with expansion of endoplasmic reticulum (ER) tubules, activation of ER stress and unfolded protein response pathways in Myh9&10 cKO kidneys. We conclude that NM2 proteins are required for localization and transport of UMOD and loss of function results in accumulation of UMOD and ER stress mediated progressive renal tubulointerstitial disease. These observations establish cell type-specific role(s) for NM2 proteins in regulation of specialized renal epithelial transport pathways and reveal the possibility that human kidney disease associated with MYH9 mutations could be of renal epithelial origin..
Karla L. Otterpohl, Brook W. Busselman, Ishara Ratnayake, Ryan G. Hart, Kimberly Hart, Claire Evans, Carrie L. Phillips, Jordan R. Beach, Phil Ahrenkiel, Bruce Molitoris, Kameswaran Surendran, Indra Chandrasekar
Canagliflozin (Cana) is an inhibitor of the sodium glucose transporter 2 (SGLT2), and is thought to act by blocking renal reuptake and intestinal absorption of glucose. Cana is FDA-approved for treatment of diabetes, and affords protection from cardiovascular and kidney diseases. In the context of the mouse Interventions Testing Program, genetically heterogeneous mice were given chow containing 180 ppm Cana at 7 months of age until their death. Cana extended median survival of male mice by 14%, with p < 0.001 by log-rank test. Cana also increased by 9% the age for 90th percentile survival (p < 0.001 by Wang/Allison test), with parallel effects seen at each of three test sites. Cana did not alter the distribution of inferred cause of death, nor of incidental pathology findings at end-of-life necropsies. No benefits were seen in female mice. The lifespan benefit of Cana is likely to reflect blunting of peak glucose levels, because similar longevity effects are seen in mice given acarbose, a diabetes drug that blocks glucose surges through a distinct mechanism, i.e. slowing breakdown of carbohydrate in the intestine. Interventions that control daily peak glucose levels deserve attention as possible preventive medicines to protect from a wide range of late-life neoplastic and degenerative diseases.
Richard A. Miller, David E. Harrison, David B. Allison, Molly A. Bogue, Lucas K. Debarba, Vivian Diaz, Elizabeth Fernandez, Andrzej T. Galecki, W. Timothy Garvey, Hashan Jayarathne, Navasuja Kumar, Martin Javors, Warren Ladiges, Francesca Macchiarini, James F. Nelson, Peter C. Reifsnyder, Nadia Rosenthal, Marianna Sadagurski, Adam B. Salmon, Daniel L. Smith, Jr., Jessica M. Snyder, David B. Lombard, Randy Strong
Somatic KRAS mutations are highly prevalent in many human cancers. In addition, a distinct spectrum of germline KRAS mutations cause developmental disorders called RASopathies. The mutant proteins encoded by these germline KRAS mutations are less biochemically and functionally activated than the mutant proteins found in cancer. We generated mice harboring conditional KrasLSL-P34R and KrasLSL-T58I “knock in” alleles and characterized the consequences of each mutation in vivo. Embryonic expression of KrasT58I resulted in craniofacial abnormalities reminiscent of RASopathy disorders, and these mice also exhibited hyperplastic growth of multiple organs, modest alterations in cardiac valvulogenesis, myocardial hypertrophy, and myeloproliferation. By contrast, embryonic KrasP34R expression resulted in early perinatal lethality from respiratory failure due to defective lung sacculation, which was associated with aberrant ERK activity in lung epithelial cells. Somatic Mx1-Cre-mediated activation in the hematopoietic compartment showed that KrasP34R and KrasT58I expression had distinct signaling effects despite causing a similar spectrum of hematologic diseases. These novel mouse strains are robust models for investigating the consequences of endogenous hyperactive K-Ras signaling in different developing and adult tissues, for comparing how oncogenic and germline K-Ras proteins perturb signaling networks and cell fate decisions, and for performing preclinical therapeutic trials.
Jasmine C. Wong, Pedro A. Perez-Mancera, Tannie Q. Huang, Jangkyung Kim, Joaquim Grego-Bessa, Maria del pilar Alzamora, Scott C. Kogan, Amnon Sharir, Susan H. Keefe, Carolina E. Morales, Denny Schanze, Pau Castel, Kentaro Hirose, Guo N. Huang, Martin Zenker, Dean Sheppard, Ophir Klein, David Tuveson, Benjamin S. Braun, Kevin Shannon
With an expanding aging population burdened with comorbidities, there is considerable interest in treatments that optimize health in later life. Acarbose (ACA), a drug used clinically to treat Type 2 diabetes (T2DM) can extend mouse lifespan, with greater effect in males than in females. Utilizing a genetically heterogeneous mouse model, we tested the ability of ACA to ameliorate functional, pathological and biochemical changes that occur during aging, and determined which of the effects of age and drug were sex-dependent. In both sexes, ACA prevented age-dependent loss of body mass, in addition to improving balance/coordination on an accelerating rotarod, rotarod endurance, and grip strength. Age-related cardiac hypertrophy was seen only in male mice, and this male-specific aging effect was attenuated by ACA. ACA-sensitive cardiac changes were associated with reduced activation of cardiac growth promoting pathways and increased abundance of peroxisomal proteins involved in lipid metabolism. ACA further ameliorated age-associated changes in cardiac lipid species, particularly lysophospholipids – changes which have previously been associated with aging, cardiac dysfunction and cardiovascular disease in humans. In the liver, ACA had pronounced effects on lipid handling in both sexes, reducing hepatic lipidosis during aging and shifting the liver lipidome in adulthood, particularly favoring reduced triglyceride (TAG) accumulation. Our results demonstrate that ACA, already in clinical use for T2DM, has broad-ranging anti-aging effects in multiple tissues, and may have the potential to increase physical function and alter lipid biology to preserve or improve health at older ages.
Jonathan J Herrera, Sean Louzon, Kaitlyn Pifer, Danielle Leander, Gennifer E. Merrihew, Jea H. Park, Kate Szczesniak, Jeremy A. Whitson, John E. Wilkinson, Oliver Fiehn, Michael J. MacCoss, Sharlene M. Day, Richard A. Miller, Michael Garratt
The integration of HIV DNA into the host genome contributes to lifelong infection in most individuals. Few studies have examined integration in lymphoid tissue, where HIV predominantly persists before and after antiretroviral treatment (ART). Of particular interest is whether integration site distributions differ between infection stages with paired blood and tissue comparisons. Here, we profiled HIV integration site distributions in sorted memory, tissue resident, and/or follicular helper CD4+ T-cell subsets from paired blood and lymphoid tissue samples from acute, chronic, and ART-treated individuals (n=3 each). We observed minor differences in the frequency of non-intronic and non-distal intergenic sites varying with tissue and residency phenotypes during ART. Genomic and epigenetic annotations were generally similar. Clonal expansion of cells marked by identical integration sites was detected, with increased detection in chronic and ART-treated individuals. However, overlap between or within CD4+ T-cell subsets or tissue compartments was only observed in 8 unique sites out of 3,540 sites studied. Together, these findings suggest that shared integration sites between blood and tissue may, depending on the tissue site, be the exception rather than the rule, and indicate that additional studies are necessary to fully understand the heterogeneity of tissue sequestered HIV reservoirs.
Vincent H. Wu, Christopher L Nobles, Leticia Kuri-Cervantes, Kevin McCormick, John K. Everett, Son Nguyen, Perla M. del Río Estrada, Mauricio González-Navarro, Santiago Ávila-Ríos, Gustavo Reyes-Terán, Frederic D. Bushman, Michael R. Betts
Myeloid cells are increasingly recognized as a major player in transplant rejection. Here, we used a murine kidney transplantation model and single-cell transcriptomics to dissect the contribution of myeloid cell subsets and their potential signaling pathways to kidney transplant rejection. Using a variety of bioinformatic techniques including machine learning, we demonstrated that kidney allograft-infiltrating myeloid cells followed a trajectory of differentiating from monocytes to pro-inflammatory macrophages, and exhibited distinct interactions with kidney allograft parenchymal cells. While this process correlated with a unique pattern of myeloid cell transcripts, a top gene identified was Axl, a member of the receptor tyrosine kinase family TAM (Tyro3/Axl/Mertk). Using kidney transplant recipients with Axl gene deficiency, we further demonstrated that Axl augmented intragraft differentiation of pro-inflammatory macrophages, likely via its effect on the transcription factor Cebpb. This in turn promoted intragraft recruitment, differentiation and proliferation of donor-specific T cells, and enhanced early allograft inflammation evidenced by histology. We conclude that myeloid cell Axl expression identified by single-cell transcriptomics of kidney allografts in our study plays a major role in promoting intragraft myeloid cell and T cell differentiation, and presents a novel therapeutic target for controlling kidney allograft rejection and improving kidney allograft survival.
Anil Dangi, Naveen R. Natesh, Irma Husain, Zhicheng Ji, Laura Barisoni, Jean Kwun, Xiling Shen, Edward B. Thorp, Xunrong Luo
The ability of HDL to inhibit inflammation in adipocytes and adipose tissue is reduced when HDL contains serum amyloid A (SAA) due to trapping of SAA in HDL by proteoglycans at the adipocyte surface. Since we recently found that the major extracellular matrix proteoglycan produced by hypertrophic adipocytes is versican, whereas activated adipose tissue macrophages produce mainly biglycan, the role of proteoglycans in determining the anti-inflammatory properties of HDL was further investigated. The distribution of versican, biglycan, apolipoprotein A-I (the major apolipoprotein of HDL) and SAA were similar in adipose tissue from obese mice and obese human subjects. Co-localization of SAA-enriched HDL with versican and biglycan at the cell surface of adipocyte and peritoneal macrophages, respectively, was blocked by silencing these proteoglycans, which also restored the anti-inflammatory property of SAA-enriched HDL despite the presence of SAA. Similar to adipocytes, normal HDL exerts its anti-inflammatory function in macrophages by reducing lipid rafts, reactive oxygen species generation and translocation of toll like receptor 4 and NADPH oxidase 2 into lipid rafts, effects that are not observed with SAA-enriched HDL. These findings imply that SAA present in HDL can be trapped by adipocyte-derived versican and macrophage-derived biglycan, thereby blunting HDL’s anti-inflammatory properties.
Chang Yeop Han, Inkyung Kang, Mohamed Omer, Shari Wang, Tomasz Wietecha, Thomas N. Wight, Alan Chait
Hidradenitis Suppurativa (HS) is a chronic skin disorder of unknown etiology that manifests as recurrent, painful lesions. Cutaneous dysbiosis and unresolved inflammation are hallmarks of active HS, but their origin and interplay remain unclear. Our metabolomic profiling of HS skin revealed an abnormal induction of the kynurenine pathway (KP) of tryptophan catabolism in dermal fibroblasts correlating with the release of KP-inducing cytokines by inflammatory cell infiltrates. Notably, over-activation of the KP in lesional skin was associated with local and systemic depletion in tryptophan. Yet the skin microbiota normally degrades host tryptophan into indoles regulating tissue inflammation via engagement of the Aryl Hydrocarbon Receptor (AHR). In HS skin lesions, we detected contextual defects in AHR activation coinciding with impaired production of bacteria-derived AHR agonists and decreased incidence of AHR ligand-producing bacteria in the resident flora. Dysregulation of tryptophan catabolism at the skin-microbiota interface thus provides a mechanism linking the immunological and microbiological features of HS lesions. In addition to revealing metabolic alterations in HS patients, our study suggests that correcting AHR signaling would help restore immune homeostasis in HS skin.
Laure Guenin-Macé, Jean-David Morel, Jean-Marc Doisne, Angèle Schiavo, Lysiane Boulet, Véronique Mayau, Pedro Goncalves, Sabine Duchatelet, Alain Hovnanian, Vincent Bondet, Darragh Duffy, Marie-Noëlle Ungeheuer, Maïa Delage, Aude Nassif, James P. Di Santo, Caroline Demangel
No posts were found with this tag.