Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,511 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 201
  • 202
  • 203
  • …
  • 251
  • 252
  • Next →
Autophagic adaptation to oxidative stress alters peritoneal residential macrophage survival and ovarian cancer metastasis
Houjun Xia, Shasha Li, Xiong Li, Weichao Wang, Yingjie Bian, Shuang Wei, Sara Grove, Weimin Wang, Linda Vatan, J. Rebecca Liu, Karen McLean, Ramandeep Rattan, Adnan R. Munkarah, Jun-Lin Guan, Ilona Kryczek, Weiping Zou
Houjun Xia, Shasha Li, Xiong Li, Weichao Wang, Yingjie Bian, Shuang Wei, Sara Grove, Weimin Wang, Linda Vatan, J. Rebecca Liu, Karen McLean, Ramandeep Rattan, Adnan R. Munkarah, Jun-Lin Guan, Ilona Kryczek, Weiping Zou
View: Text | PDF

Autophagic adaptation to oxidative stress alters peritoneal residential macrophage survival and ovarian cancer metastasis

  • Text
  • PDF
Abstract

Tumor-associated macrophages (TAMs) affect cancer progression and therapy. Ovarian carcinoma often metastasizes to the peritoneal cavity. Here, we found two peritoneal macrophage subsets in mice bearing ID8 ovarian cancer based on the Tim-4 (T-cell immunoglobulin and mucin domain containing 4) expression. Tim-4+ TAMs were embryonically originated and locally sustained while Tim-4- TAMs were replenished from circulating monocytes. Tim-4+ TAMs, but not Tim-4- TAMs, promoted tumor growth in vivo. Relative to Tim-4- TAMs, Tim-4+ TAMs manifested high oxidative phosphorylation and adapted mitophagy to alleviate oxidative stress. High levels of arginase-1 in Tim-4+ TAMs contributed to potent mitophagy activities via weakened mTORC1 activation due to low arginine resultant from arginase-1-mediated metabolism. Furthermore, genetic deficiency of autophagy element FIP200 resulted in Tim-4+ TAM loss via ROS-mediated apoptosis, and elevated T cell-immunity and ID8 tumor inhibition in vivo. Moreover, human ovarian cancer-associated CRIg (complement receptor of the Immunoglobulin superfamily) positive macrophages were transcriptionally, metabolically, and functionally similar to murine Tim-4+ TAMs. Thus, targeting CRIg+ (Tim-4+) TAMs may potentially treat ovarian cancer patients with peritoneal metastasis.

Authors

Houjun Xia, Shasha Li, Xiong Li, Weichao Wang, Yingjie Bian, Shuang Wei, Sara Grove, Weimin Wang, Linda Vatan, J. Rebecca Liu, Karen McLean, Ramandeep Rattan, Adnan R. Munkarah, Jun-Lin Guan, Ilona Kryczek, Weiping Zou

×

Electroconvulsive stimulation attenuates chronic neuroinflammation
Smadar Goldfarb, Nina Fainstein, Tamir Ben-Hur
Smadar Goldfarb, Nina Fainstein, Tamir Ben-Hur
View: Text | PDF

Electroconvulsive stimulation attenuates chronic neuroinflammation

  • Text
  • PDF
Abstract

Electroconvulsive therapy is highly effective in neuropsychiatric disorders by unknown mechanisms. Microglial toxicity plays key role in neuroinflammatory and degenerative diseases, where there is critical shortage in therapies. This study examined the effects of electroconvulsive seizures (ECS) on chronic neuroinflammation and microglial neurotoxicity.Electric brain stimulation inducing full tonic-clonic seizures during chronic relapsing-progressive experimental autoimmune encephalomyelitis (EAE) reduced spinal immune cell infiltration, reduced myelin and axonal loss, and prevented clinical deterioration. Using the transfer EAE model we examined the effect of ECS on systemic immune response in donor mice versus ECS effect on CNS innate immune activity in recipient mice. ECS did not affect encephalitogenicity of systemic T cells, but targeted the CNS directly to inhibit T-cell induced neuroinflammation. In vivo and ex-vivo assays indicated that ECS suppressed microglial neurotoxicity, by reducing iNOS expression, nitric oxide and reactive oxygen species (ROS) production, and by reducing CNS oxidative stress. Microglia from ECS treated EAE mice expressed less T cell stimulatory and chemoattractant factors. Our finding indicate that Electroconvulsive therapy targets the CNS innate immune system to reduce neuroinflammation by attenuating microglial neurotoxicity. These findings signify a novel therapeutic approach for chronic neuroinflammatory, neuropsychiatric and neurodegenerative diseases.

Authors

Smadar Goldfarb, Nina Fainstein, Tamir Ben-Hur

×

Comprehensive plasma proteomic profiling reveals biomarkers for active tuberculosis
Diana J. Garay-Baquero, Cory H. White, Naomi F. Walker, Marc Tebruegge, Hannah F. Schiff, Cesar Ugarte-Gil, Stephen Morris-Jones, Ben G. Marshall, Antigoni Manousopoulou, John H. Adamson, Andres F. Vallejo, Magdalena K. Bielecka, Robert J. Wilkinson, Liku B. Tezera, Christopher H. Woelk, Spiros D. Garbis, Paul Elkington
Diana J. Garay-Baquero, Cory H. White, Naomi F. Walker, Marc Tebruegge, Hannah F. Schiff, Cesar Ugarte-Gil, Stephen Morris-Jones, Ben G. Marshall, Antigoni Manousopoulou, John H. Adamson, Andres F. Vallejo, Magdalena K. Bielecka, Robert J. Wilkinson, Liku B. Tezera, Christopher H. Woelk, Spiros D. Garbis, Paul Elkington
View: Text | PDF

Comprehensive plasma proteomic profiling reveals biomarkers for active tuberculosis

  • Text
  • PDF
Abstract

Background Tuberculosis (TB) kills more people than any other infection and new diagnostic tests to identify active cases are urgently required. We aimed to discover and verify novel markers for TB in non-depleted plasma. Methods We applied an optimised quantitative proteomics discovery methodology based on multidimensional and orthogonal liquid chromatographic separation hyphenated with high-resolution mass spectrometry (q3D LC-MS) to study non-depleted plasma of 11 patients with active TB compared to 10 healthy control donors. Prioritised candidates were verified in an independent UK-based (n=118) and a South African cohorts (n=203). Results We generated the most comprehensive TB plasma proteome to date, profiling 5022 proteins spanning 11 orders-of-magnitude concentration range with diverse biochemical and molecular properties. We further analysed the predominantly low molecular weight sub-proteome; identifying 46 proteins with significantly increased and 90 with decreased abundance (peptide FDR ≤1%, q-value ≤0.05). Biological network analysis showed regulation of new pathways involving lipid and organophosphate ester transport. Verification was performed for novel candidate biomarkers (CFHR5, ILF2) in two independent cohorts. These proteins were elevated in both TB and other respiratory diseases (ORD). Receiver-operating-characteristics analyses using a 5-protein panel (CFHR5, LRG1, CRP, LBP and SAA1) exhibited discriminatory power in distinguishing between TB and ORD (AUC =0.81). Conclusions We report the most comprehensive TB plasma proteome to date, identifying numerous novel markers with verification in two independent cohorts, which led to a 5-protein biosignature with potential to improve TB diagnosis. With further development, these biomarkers have potential as a diagnostic triage test. Funding Colombia: Colciencias. UK: Medical Research Council, Innovate UK, National Institute for Health Research, Academy of Medical Sciences. Peru: Program for Advanced Research Capacities for AIDS. South Africa: Wellcome Centre for Infectious Diseases Research.

Authors

Diana J. Garay-Baquero, Cory H. White, Naomi F. Walker, Marc Tebruegge, Hannah F. Schiff, Cesar Ugarte-Gil, Stephen Morris-Jones, Ben G. Marshall, Antigoni Manousopoulou, John H. Adamson, Andres F. Vallejo, Magdalena K. Bielecka, Robert J. Wilkinson, Liku B. Tezera, Christopher H. Woelk, Spiros D. Garbis, Paul Elkington

×

ZZW-115-dependent inhibition of NUPR1 nuclear translocation sensitizes cancer cells to genotoxic agents
Wenjun Lan, Patricia Santofimia-Castaño, Mirna Swayden, Yi Xia, Zhengwei Zhou, Stephane Audebert, Luc Camoin, Can Huang, Ling Peng, Ana Jiménez-Alesanco, Adrián Velázquez-Campoy, Olga Abian, Gwen Lomberk, Raul Urrutia, Bruno Rizzuti, Vincent Geli, Philippe Soubeyran, Jose Luis Neira, Juan L. Iovanna
Wenjun Lan, Patricia Santofimia-Castaño, Mirna Swayden, Yi Xia, Zhengwei Zhou, Stephane Audebert, Luc Camoin, Can Huang, Ling Peng, Ana Jiménez-Alesanco, Adrián Velázquez-Campoy, Olga Abian, Gwen Lomberk, Raul Urrutia, Bruno Rizzuti, Vincent Geli, Philippe Soubeyran, Jose Luis Neira, Juan L. Iovanna
View: Text | PDF

ZZW-115-dependent inhibition of NUPR1 nuclear translocation sensitizes cancer cells to genotoxic agents

  • Text
  • PDF
Abstract

Establishing the interactome of the cancer associated stress protein NUPR1 (NUclear PRotein 1), we found that it binds to several hundreds of proteins, including proteins involved in nuclear translocation, DNA repair and key factors of the SUMO pathway. We demonstrated that the NUPR1 inhibitor ZZW-115, an organic synthetic molecule, competes with importins for the binding to the NLS region of NUPR1 thereby inhibiting its nuclear translocation. We hypothesized, and then proved, that inhibition of NUPR1 by ZZW-115 sensitizes cancer cells to DNA damage induced by several genotoxic agents. Strikingly, we found that treatment with ZZW-115 reduced SUMOylation of several proteins involved in DNA damage response (DDR). We further reported that the presence of recombinant NUPR1 improved the SUMOylation in a cell-free system indicating NUPR1 directly stimulates the SUMOylation machinery. We propose that ZZW-115 sensitizes cancer cells to genotoxic agents by inhibiting the nuclear translocation of NUPR1 and thereby decreasing the SUMOylation dependent functions of key proteins involved in the DDR.

Authors

Wenjun Lan, Patricia Santofimia-Castaño, Mirna Swayden, Yi Xia, Zhengwei Zhou, Stephane Audebert, Luc Camoin, Can Huang, Ling Peng, Ana Jiménez-Alesanco, Adrián Velázquez-Campoy, Olga Abian, Gwen Lomberk, Raul Urrutia, Bruno Rizzuti, Vincent Geli, Philippe Soubeyran, Jose Luis Neira, Juan L. Iovanna

×

Loss of Sbds in zebrafish leads to neutropenia and pancreas and liver atrophy
Usua Oyarbide, Arish N. Shah, Wilmer Amaya-Mejia, Matthew Snyderman, Margaret Kell, Daniela Allende, Eliezer Calo, Jacek Topczewski, Seth Corey
Usua Oyarbide, Arish N. Shah, Wilmer Amaya-Mejia, Matthew Snyderman, Margaret Kell, Daniela Allende, Eliezer Calo, Jacek Topczewski, Seth Corey
View: Text | PDF

Loss of Sbds in zebrafish leads to neutropenia and pancreas and liver atrophy

  • Text
  • PDF
Abstract

Shwachman-Diamond syndrome (SDS) is characterized by exocrine pancreatic insufficiency, neutropenia, and skeletal abnormalities. Biallelic mutations in SBDS, which encodes a ribosome maturation factor, are found in 90% of SDS cases. Sbds-/- mice are embryonic lethal. Using CRISPR/Cas9 editing, we created sbds-deficient zebrafish strains. Sbds protein levels progressively decreased and became undetectable at 10 days post fertilization (dpf). Polysome analysis revealed decreased 80S ribosomes. Homozygous mutant fish developed normally until 15 dpf. Mutant fish subsequently have stunted growth and shows signs of atrophy in pancreas, liver, and intestine. In addition, neutropenia occurred by 5 dpf. Upregulation of tp53 mRNA did not occur until 10 dpf and inhibition of proliferation correlating with death by 21 dpf. Transcriptome analysis showed tp53 activation through upregulation of genes involved in cell cycle arrest, cdkn1a and ccng1, and apoptosis, puma and mdm2. However, elimination of Tp53 function did not prevent lethality. Because of growth retardation and atrophy of intestinal epithelia, we studied the effects of starvation on wildtype fish. Starved wildtype fish showed intestinal atrophy, zymogen granule loss, and tp53 upregulation – similar to the mutant phenotype. In addition, there was reduction in neutral lipid storage and ribosomal protein amount, similar to the mutant phenotype. Thus, loss of Sbds in zebrafish phenocopies much of the human disease and is associated with growth arrest and tissue atrophy, particularly of the gastrointestinal system, at the larval stage. A variety of stress responses, some associated with Tp53, contribute to pathophysiology of SDS.

Authors

Usua Oyarbide, Arish N. Shah, Wilmer Amaya-Mejia, Matthew Snyderman, Margaret Kell, Daniela Allende, Eliezer Calo, Jacek Topczewski, Seth Corey

×

Regulation of glycolysis and the Warburg effect in wound healing
Roohi Vinaik, Dalia Barayan, Christopher Auger, Abdikarim Abdullahi, Marc G. Jeschke
Roohi Vinaik, Dalia Barayan, Christopher Auger, Abdikarim Abdullahi, Marc G. Jeschke
View: Text | PDF

Regulation of glycolysis and the Warburg effect in wound healing

  • Text
  • PDF
Abstract

One of the most significant adverse post-burn responses is abnormal scar formation, such as keloids. Despite its prolificacy, the underlying pathophysiology of keloid development is unknown. We recently demonstrated that NLRP3 inflammasome, the master regulator of inflammatory and metabolic responses (e.g. aerobic glycolysis), is essential for physiological wound healing. Therefore, burn patients who develop keloids may exhibit altered immunometabolic responses at the site of injury, which interferes with normal healing and portends keloid development. Here, we confirmed keloid NLRP3 activation (caspase-1 (p<0.05), IL1β (p<0.05), IL18 (p<0.01)) and upregulation in Glut1 (p<0.001) and glycolytic enzymes. Burn skin similarly displayed enhanced glycolysis and Glut1 expression (p<0.01). However, Glut1 was significantly higher in keloid compared to non-keloid burn patients (>2 standard deviations above mean). Targeting aberrant glucose metabolism with shikonin, a pyruvate kinase M2 inhibitor, dampened NLRP3-mediated inflammation (caspase-1 (p<0.05), IL1β (p<0.01)) and improved healing in vivo. In summary, burn skin exhibited evidence of Warburg-like metabolism, similar to keloids. Targeting this altered metabolism could change the trajectory towards normal scarring, indicating the clinical possibility of shikonin for abnormal scar prevention.

Authors

Roohi Vinaik, Dalia Barayan, Christopher Auger, Abdikarim Abdullahi, Marc G. Jeschke

×

Local complement activation is associated with primary graft dysfunction after lung transplantation
Hrishikesh S. Kulkarni, Kristy Ramphal, Lina Ma, Melanie Brown, Michelle L. Oyster, Kaitlyn Speckhart, Tsuyoshi Takahashi, Derek E. Byers, Mary K. Porteous, Laurel Kalman, Ramsey R. Hachem, Melanie Rushefski, Ja'Nia McPhatter, Marlene Cano, Daniel Kreisel, Masina Scavuzzo, Brigitte Mittler, Edward Cantu, Katrine Pilely, Peter Garred, Jason D. Christie, John Atkinson, Andrew E. Gelman, Joshua M. Diamond
Hrishikesh S. Kulkarni, Kristy Ramphal, Lina Ma, Melanie Brown, Michelle L. Oyster, Kaitlyn Speckhart, Tsuyoshi Takahashi, Derek E. Byers, Mary K. Porteous, Laurel Kalman, Ramsey R. Hachem, Melanie Rushefski, Ja'Nia McPhatter, Marlene Cano, Daniel Kreisel, Masina Scavuzzo, Brigitte Mittler, Edward Cantu, Katrine Pilely, Peter Garred, Jason D. Christie, John Atkinson, Andrew E. Gelman, Joshua M. Diamond
View: Text | PDF

Local complement activation is associated with primary graft dysfunction after lung transplantation

  • Text
  • PDF
Abstract

Background: The complement system plays a key role in host defense but is activated by ischemia-reperfusion injury (IRI). Primary graft dysfunction (PGD) is a form of acute lung injury occurring predominantly due to IRI, which worsens survival after lung transplantation (LTx). Local complement activation is associated with acute lung injury, but whether it is more reflective of allograft injury compared to systemic activation remains unclear. We proposed that local complement activation would help identify those who develop PGD post-LTx. We also aimed to identify which complement activation pathways are associated with PGD. Methods: We performed a multicenter cohort study at the University of Pennsylvania and Washington University. Bronchoalveolar lavage (BAL) and plasma specimens were obtained from recipients within 24 h post-LTx. PGD was scored based on the consensus definition. Complement activation products and components of each arm of the complement cascade were measured using ELISA. Results: In both cohorts, sC4d and sC5b-9 levels were increased in BAL of subjects with PGD compared to those without PGD. Subjects with PGD also had higher C1q, C2, C4, and C4b, compared to subjects without PGD, suggesting classical and lectin pathway involvement. Ba levels were higher in subjects with PGD, suggesting alternative pathway activation. Among lectin pathway-specific components, MBL and FCN-3 had a moderate-to-strong correlation with the terminal complement complex in the BAL but not in the plasma. Conclusion: Complement activation fragments are detected in the BAL within 24 h post-LTx. Components of all three pathways are locally increased in subjects with PGD. Our findings create a precedent for investigating complement-targeted therapeutics to mitigate PGD. Funding: This research was supported by the National Institutes of Health (NIH), American Lung Association, Children’s Discovery Institute, the Robert Wood Johnson Foundation, the Cystic Fibrosis Foundation, the Barnes-Jewish Hospital Foundation, The Danish Hearth Foundation], The Danish Research Foundation of Independent Research, The Svend Andersen Research Foundation and the Novo Nordisk Research Foundation.

Authors

Hrishikesh S. Kulkarni, Kristy Ramphal, Lina Ma, Melanie Brown, Michelle L. Oyster, Kaitlyn Speckhart, Tsuyoshi Takahashi, Derek E. Byers, Mary K. Porteous, Laurel Kalman, Ramsey R. Hachem, Melanie Rushefski, Ja'Nia McPhatter, Marlene Cano, Daniel Kreisel, Masina Scavuzzo, Brigitte Mittler, Edward Cantu, Katrine Pilely, Peter Garred, Jason D. Christie, John Atkinson, Andrew E. Gelman, Joshua M. Diamond

×

AAV9 gene transfer of cMyBPC N-terminal domains ameliorates cardiomyopathy in cMyBPC deficient mice
Jiayang Li, Ranganath Mamidi, Chang Yoon Doh, Joshua B. Holmes, Nikhil Bharambe, Rajesh Ramachandran, Julian E. Stelzer
Jiayang Li, Ranganath Mamidi, Chang Yoon Doh, Joshua B. Holmes, Nikhil Bharambe, Rajesh Ramachandran, Julian E. Stelzer
View: Text | PDF

AAV9 gene transfer of cMyBPC N-terminal domains ameliorates cardiomyopathy in cMyBPC deficient mice

  • Text
  • PDF
Abstract

Decreased cardiac myosin-binding protein C (cMyBPC) expression due to inheritable mutations is thought to contribute to the hypertrophic cardiomyopathy (HCM) phenotype, suggesting increasing cMyBPC content is of therapeutic benefit. In vitro assays show cMyBPC N-terminal domains (NTDs) contain structural elements necessary and sufficient to modulate acto-myosin interactions, but it is unknown if they can regulate in vivo myocardial function. To test if NTDs can recapitulate the effects of full-length (FL) cMyBPC in rescuing cardiac function in a cMyBPC-null mouse model of HCM, we assessed the efficacy of AAV9 gene transfer of a cMyBPC NTD containing domains C0C2 and compared its therapeutic potential with AAV9-FL gene replacement. AAV9 vectors were administered systemically at neonatal day 1, when early-onset disease phenotypes begin to manifest. A comprehensive analysis of in vivo and in vitro function was performed following cMyBPC gene transfer. Our results show that a systemic injection of AAV9-C0C2 gene transfer significantly improved cardiac function (e.g. 52.24±1.69 ejection fraction in C0C2 treated group compared to 40.07±1.97 in control cMyBPC-/- group, p<0.05) and reduced the histopathologic signs of cardiomyopathy. Furthermore, C0C2 significantly slowed and normalized the accelerated cross-bridge kinetics (32.41% decrease of krel) found in cMyBPC-/- control myocardium. Results indicate that C0C2 can rescue biomechanical defects of cMyBPC deficiency and the NTD may be a target region for therapeutic myofilament kinetic manipulation.

Authors

Jiayang Li, Ranganath Mamidi, Chang Yoon Doh, Joshua B. Holmes, Nikhil Bharambe, Rajesh Ramachandran, Julian E. Stelzer

×

Resolvin D1 supports skeletal myofiber regeneration via actions on myeloid and muscle stem cells
James F. Markworth, Lemuel A. Brown, Eunice Lim, Carolyn Floyd, Jacqueline Larouche, Jesus A. Castor-Macias, Kristoffer B. Sugg, Dylan C. Sarver, Peter C. D. Macpherson, Carol S. Davis, Carlos A. Aguilar, Krishna Rao Maddipati, Susan V. Brooks
James F. Markworth, Lemuel A. Brown, Eunice Lim, Carolyn Floyd, Jacqueline Larouche, Jesus A. Castor-Macias, Kristoffer B. Sugg, Dylan C. Sarver, Peter C. D. Macpherson, Carol S. Davis, Carlos A. Aguilar, Krishna Rao Maddipati, Susan V. Brooks
View: Text | PDF

Resolvin D1 supports skeletal myofiber regeneration via actions on myeloid and muscle stem cells

  • Text
  • PDF
Abstract

Specialized pro-resolving mediators (SPMs) actively limit inflammation and expedite its resolution by modulating leukocyte recruitment and function. Here we profiled intramuscular lipid mediators via LC-MS based metabolipidomics following myofiber injury and investigated the potential role of SPMs in skeletal muscle inflammation and repair. Both pro-inflammatory eicosanoids and SPMs increased following myofiber damage induced by either intramuscular injection of barium chloride or synergist ablation-induced functional muscle overload. Daily systemic administration of the SPM resolvin D1 (RvD1) as an immunoresolvent limited the degree and duration of inflammation, enhanced regenerating myofiber growth, and improved recovery of muscle strength. RvD1 suppressed inflammatory cytokine expression, enhanced polymorphonuclear cell clearance, modulated the local muscle stem cell response, and polarized intramuscular macrophages to a more pro-regenerative subset. RvD1 had minimal direct impact on in-vitro myogenesis but directly suppressed myokine production and stimulated macrophage phagocytosis, showing that SPMs can modulate both infiltrating myeloid and resident muscle cell populations. These data reveal the efficacy of immunoresolvents as a novel alternative to classical anti-inflammatory interventions in the management of muscle injuries to modulate inflammation while stimulating tissue repair.

Authors

James F. Markworth, Lemuel A. Brown, Eunice Lim, Carolyn Floyd, Jacqueline Larouche, Jesus A. Castor-Macias, Kristoffer B. Sugg, Dylan C. Sarver, Peter C. D. Macpherson, Carol S. Davis, Carlos A. Aguilar, Krishna Rao Maddipati, Susan V. Brooks

×

Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist
Francis S. Willard, Jonathan D. Douros, Maria B. N. Gabe, Aaron D. Showalter, David B. Wainscott, Todd M. Suter, Megan E. Capozzi, Wijnand J. C. van der Velden, Cynthia. Stutsman, Guemalli R. Cardona, Shweta Urva, Paul J. Emmerson, Jens J. Holst, David A. D'Alessio, Matthew P. Coghlan, Mette M. Rosenkilde, Jonathan E. Campbell, Kyle W. Sloop
Francis S. Willard, Jonathan D. Douros, Maria B. N. Gabe, Aaron D. Showalter, David B. Wainscott, Todd M. Suter, Megan E. Capozzi, Wijnand J. C. van der Velden, Cynthia. Stutsman, Guemalli R. Cardona, Shweta Urva, Paul J. Emmerson, Jens J. Holst, David A. D'Alessio, Matthew P. Coghlan, Mette M. Rosenkilde, Jonathan E. Campbell, Kyle W. Sloop
View: Text | PDF

Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist

  • Text
  • PDF
Abstract

Tirzepatide (LY3298176) is a dual GIP and GLP-1 receptor agonist under development for the treatment of type 2 diabetes mellitus (T2DM), obesity, and non-alcoholic steatohepatitis. Early phase trials in T2DM indicate that tirzepatide improves clinical outcomes beyond those achieved by a selective GLP-1 receptor agonist. Therefore, we hypothesized that the integrated potency and signaling properties of tirzepatide provide a unique pharmacological profile tailored for improving broad metabolic control. Here, we establish methodology for calculating occupancy of each receptor for clinically efficacious doses of the drug. This analysis reveals a greater degree of engagement of tirzepatide for the GIP receptor (GIPR) than the GLP-1 receptor (GLP-1R), corroborating an imbalanced mechanism of action. Pharmacologically, signaling studies demonstrate that tirzepatide mimics the actions of native GIP at the GIPR but show bias at the GLP-1R to favor cAMP generation over β-arrestin recruitment, coincident with a weaker ability to drive GLP-1R internalization compared with GLP-1. Experiments in primary islets reveal β-arrestin1 limits the insulin response to GLP-1, but not GIP or tirzepatide, suggesting the biased agonism of tirzepatide enhances insulin secretion. Imbalance toward GIPR, combined with distinct signaling properties at the GLP-1R, together may account for the promising efficacy of this new investigational agent.

Authors

Francis S. Willard, Jonathan D. Douros, Maria B. N. Gabe, Aaron D. Showalter, David B. Wainscott, Todd M. Suter, Megan E. Capozzi, Wijnand J. C. van der Velden, Cynthia. Stutsman, Guemalli R. Cardona, Shweta Urva, Paul J. Emmerson, Jens J. Holst, David A. D'Alessio, Matthew P. Coghlan, Mette M. Rosenkilde, Jonathan E. Campbell, Kyle W. Sloop

×
  • ← Previous
  • 1
  • 2
  • …
  • 201
  • 202
  • 203
  • …
  • 251
  • 252
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts