Interleukin-33 (IL-33), a nuclear alarmin released during cell death, exerts context-specific effects on adaptive and innate immune cells eliciting potent inflammatory responses. We screened blood, skin and kidney tissues from patients with Systemic Lupus Erythematosus (SLE), a systemic autoimmune disease driven by unabated type I interferon (IFN) production, and found increased amounts of extracellular IL-33 complexed with Neutrophil Extracellular Traps (NETs), correlating with severe, active disease. Using a combination of molecular, imaging and proteomic approaches, we show that SLE neutrophils -activated by disease immunocomplexes- release IL-33-decorated NETs that stimulate robust IFNα synthesis by plasmacytoid dendritic cells (pDCs) in an IL-33-receptor (ST2L)-dependent manner. IL33-silenced neutrophil-like cells cultured under lupus-inducing conditions generated NETs with diminished interferogenic effect. Importantly, SLE patient-derived NETs are enriched in mature bioactive isoforms of IL-33 processed by the neutrophil proteases elastase and cathepsin G. Pharmacological inhibition of these proteases neutralized IL-33-dependent IFNα production elicited by NETs. These data demonstrate a novel role for cleaved IL-33 alarmin decorating NETs in human SLE, linking neutrophil activation, type I IFN production and end-organ inflammation with skin pathology mirroring that observed in the kidneys.
Spiros Georgakis, Katerina Gkirtzimanaki, Garyfalia Papadaki, Hariklia Gakiopoulou, Elias Drakos, Maija-Leena Eloranta, Manousos Makridakis, Georgia Kontostathi, Jerome Zoidakis, Eirini Baira, Lars Rönnblom, Dimitrios T. Boumpas, Prodromos Sidiropoulos, Panayotis Verginis, George Bertsias
Ozone is a highly reactive environmental pollutant with well-recognized adverse effects on lung health. Bronchial hyperactivity (BHR) is one consequence of ozone exposure, particularly for individuals with underlying lung disease. Our data demonstrate ozone induces substantial ATP release from human airway epithelia in vitro and into the airways of mice in vivo, and that ATP is a potent inducer of mast cell degranulation and BHR, acting through P2X7 receptors on mast cells. Both mast cell-deficient and P2X7 receptor-deficient (P2XT-/-) mice demonstrate markedly attenuated BHR to ozone. Re-constitution of mast cell-deficient mice with WT mast cells and P2X7-/- mast cells restores ozone-induced BHR. Despite equal numbers of mast cells in reconstituted mouse lungs, mice reconstituted with P2X7-/- mast cells demonstrated significantly less robust BHR than mice reconstituted with WT mast cells. These results support a model where P2X7 on both mast cells and other cell types contribute to ozone-induce BHR.
Xiaomei Kong, William C. Bennett, Corey M. Jania, Kelly D. Chason, Zachary German, Jennifer Adouli, Samuel D. Budney, Brandon T. Oby, Catharina van Heusden, Eduardo R. Lazarowski, Ilona Jaspers, Scott H. Randell, Barry A. Hedgespeth, Glenn Cruse, Xiaoyang Hua, Stephen A. Schworer, Gregory J. Smith, Samir N. P. Kelada, Stephen L. Tilley
The epidermal growth factor receptor (EGFR) inhibitor cetuximab is the only FDA-approved oncogene-targeting therapy for head and neck squamous cell carcinoma (HNSCC). Despite variable treatment response, no biomarkers exist to stratify patients for cetuximab therapy in HNSCC. Here, we applied unbiased hierarchical clustering to reverse phase protein array (RPPA) molecular profiles from patient-derived xenograft (PDX) tumors, which revealed two PDX clusters defined by protein networks associated with EGFR inhibitor resistance. In vivo validation revealed unbiased clustering to classify PDX tumors with 88% accuracy. Next, a support vector machine (SVM) classifier algorithm identified a minimalist biomarker signature consisting of eight proteins – Caveolin-1, Sox-2, AXL, STING, Brd4, Claudin-7, Connexin-43, and Fibronectin – whose expression strongly predicted cetuximab response in PDXs using either protein (AUC=0.95) or mRNA (AUC=0.97). A combination of Caveolin-1 and Sox-2 protein levels was sufficient to maintain high predictive accuracy, which we validated in HNSCC patient tumor samples with known clinical response to cetuximab. These results support further investigation into the combined use of Caveolin-1 and Sox-2 as predictive biomarkers for cetuximab response in the clinic.
Mehdi Bouhaddou, Rex H. Lee, Hua Li, Neil E. Bhola, Rachel A. O'Keefe, Mohammad Naser, Tian Ran Zhu, Kelechi Nwachuku, Umamaheswar Duvvuri, Adam B. Olshen, Ritu Roy, Aaron Hechmer, Jennifer Bolen, Stephen B. Keysar, Antonio Jimeno, Gordon B. Mills, Scott Vandenberg, Danielle L. Swaney, Daniel E. Johnson, Nevan J. Krogan, Jennifer R. Grandis
BACKGROUND. Neighborhood-level socioeconomic disadvantage has wide-ranging impacts on health outcomes, particularly in older adults. Although indices of disadvantage are a widely used tool, research conducted to date has not codified a set of standard variables that should be included in these indices for the US. The objective of this study was to conduct a systematic review of literature describing the construction of geographic indices of neighborhood-level disadvantage and to summarize and distill the key variables included in these indices. We also sought to demonstrate the utility of these indices for understanding neighborhood-level disadvantage in older adults. METHODS. We conducted a systematic review of existing indices in the English-language literature. RESULTS. We identified 6,021 articles, of which 130 met final study inclusion criteria. Our review identified seven core domains that existed across the surveyed papers, including: income, education, housing, employment, neighborhood structure, demographic makeup and health. While not universally present, the most prevalent variables included in these indices were education and employment. CONCLUSION. Identifying these seven core domains is a key finding of this review. These domains should be considered for inclusion in future neighborhood-level disadvantage indices with at least 5 domains recommended to improve the strength of the resulting index. Targeting specific domains offers a path forward towards the construction of a new US-specific index of neighborhood disadvantage with health policy applications. Such an index will be especially useful for characterizing the lifecourse impact of lived disadvantage in older adults.
William R. Buckingham, Lauren Bishop, Christopher Hooper-Lane, Brittany Anderson, Jessica Wolfson, Stephanie V. Shelton, Amy J.H. Kind
Hidradenitis suppurativa (HS) is a chronic, inflammatory skin disorder characterized by recurrent abscesses in the groin and flexural areas. HS is associated with a wide range of comorbidities that complicate the disease course. Although these comorbidities have been well-described, it remains unclear how these comorbidities co-associate and whether comorbidity profiles affect disease trajectory. In addition, it is unknown how comorbidity associations are modulated by race and gender. In this comprehensive analysis of 77 million patients in a large U.S. population-based cohort, we examine co-association patterns among HS comorbidities and identify clinically relevant phenotypic subtypes within HS. We demonstrate that these subtypes not only differ among races, but also influence clinical outcomes as measured by HS-related emergency department (ED) visits and cellulitis. Taken together, our findings provide key insights that elucidate the unique disease trajectories experienced by HS patients, and equip clinicians with a novel framework for risk stratification and improved targeted care in HS.
Vivian J. Hua, James M. Kilgour, Hyunje G. Cho, Shufeng Li, Kavita Y. Sarin
We recently described a previously unknown trans-tentorial venous system (TTVS) connecting venous drainage throughout the brain in humans. Prior to this finding, it was believed that the embryologic tentorial plexus regresses, resulting in a largely avascular tentorium. Our finding contradicted this understanding and necessitated further investigation into the development of the newly described TTVS. Herein we sought to investigate mice as a model to study the development of this system. First, using vascular casting and ex vivo micro-computed tomography (micro-CT), we demonstrate that this TTVS is conserved in adult mice. Next, using high-resolution magnetic resonance imaging (MRI), we found the primitive tentorial venous plexus in murine embryo at day 14.5. We also found that, at this embryologic stage, the tentorial plexus drains the choroid plexus. Finally, using vascular casting and micro-CT, we found that the TTVS is the dominant venous drainage in the early postnatal period (P8). Herein, we demonstrate that the TTVS is conserved between mice and humans and present a longitudinal study of its development. In addition, our findings establish mice as a translational model for further study of this newly described system and its relationship to intracranial physiology.
Pashayar P. Lookian, Vikram Chandrashekhar, Anthony Cappadona, Jean-Paul Bryant, Vibhu Chandrashekhar, Jessa M. Tunacao, Danielle R. Donahue, Jeeva P. Munasinghe, James G. Smirniotopoulos, John D. Heiss, Zhengping Zhuang, Jared S. Rosenblum
Mutations in the cilium-associated protein CEP290 cause retinal degeneration as part of multi-organ ciliopathies or as retina-specific diseases. The precise location and the functional roles of CEP290 within cilia and, specifically, the connecting cilia (CC) of photoreceptors, remain unclear. We used superresolution fluorescence microscopy and electron microscopy (TEM) to localize CEP290 in the CC and in primary cilia of cultured cells with sub-diffraction resolution, and to determine effects of CEP290 deficiency in three mutant models. Radially, CEP290 localizes in close proximity to the microtubule doublets in the region between the doublets and the ciliary membrane. Longitudinally, it is distributed throughout the length of the CC whereas it is confined to the very base of primary cilia in hRPE-1 cells. We found Y-shaped links, ciliary sub-structures between microtubules and membrane, throughout the length of the CC. Severe CEP290 deficiencies in mouse models did not prevent assembly of cilia or cause obvious mislocalization of ciliary components in early stages of degeneration. There were fewer cilia and no normal outer segments in the mutants, but the Y-shaped links were clearly present. These results point to photoreceptor-specific functions of CEP290 essential for CC maturation and stability following the earliest stages of ciliogenesis.
Valencia L. Potter, Abigail R. Moye, Michael A. Robichaux, Theodore G. Wensel
Infection is a common complication of major trauma that causes significantly increased morbidity and mortality. The mechanisms however, linking tissue injury to increased susceptibility to infection remain poorly understood. To study this relationship, we present a novel murine model where a major liver crush injury is followed by bacterial inoculation into the lung. We find that such tissue trauma both impaired bacterial clearance and was associated with significant elevations in plasma heme levels. While neutrophil (PMN) recruitment to the lung in response to Staphylococcus aureus was unchanged after trauma, PMN cleared bacteria poorly. Moreover, PMN show >50% less expression of TLR2, which is responsible, in part, for bacterial recognition. Administration of heme effectively substituted for trauma. Last, day 1 trauma patients (n=9) showed similar elevations in free heme to that seen after murine liver injury and circulating PMN showed similar TLR2 reduction compared to volunteers (n=6). These findings correlate to high infection rates.
Ghee Rye Lee, David Gallo, Rodrigo W. Alves de Souza, Shilpa Tiwari-Heckler, Eva Csizmadia, James D. Harbison, Sidharth Shankar, Valerie Banner-Goodspeed, Michael B. Yaffe, Maria Serena Longhi, Carl J. Hauser, Leo E. Otterbein
BACKGROUND. Genetics of estrogen synthesis and breast cancer risk has been elusive. The 1245A→C missense-encoding polymorphism in HSD3B1, which is common in White populations, is functionally adrenal permissive and increases synthesis of the aromatase substrate, androstenedione. We hypothesized that homozygous inheritance of the adrenal-permissive HSD3B1(1245C) is associated with postmenopausal estrogen receptor (ER)-positive breast cancer. METHODS. A prospective study of postmenopausal ER-driven breast cancer was done for determination of HSD3B1 and circulating steroids. Validation was performed in 2 other cohorts. Adrenal-permissive genotype frequency was compared between postmenopausal ER-positive breast cancer, the general population, and postmenopausal ER-negative breast cancer. RESULTS. Prospective and validation studies had 157 and 538 subjects, respectively, for the primary analysis of genotype frequency by estrogen receptor status in White female breast cancer patients postmenopausal at diagnosis. The adrenal-permissive genotype frequency in postmenopausal White women with estrogen-driven breast cancer in the prospective cohort was 17.5% (21/120) compared with 5.4% (2/37) for ER-negative breast cancer (p = 0.108) and 9.6% (429/4451) in the general population (p = 0.0077). Adrenal-permissive genotype frequency for estrogen-driven postmenopausal breast cancer was validated using Cambridge and TCGA datasets: 14.4% (56/389) compared with 6.0% (9/149) for ER-negative breast cancer (p = 0.007) and the general population (p = 0.005). Circulating androstenedione concentration was higher with the adrenal-permissive genotype (p = 0.03). CONCLUSION. Adrenal-permissive genotype is associated with estrogen-driven postmenopausal breast cancer. These findings link genetic inheritance of endogenous estrogen exposure to estrogen-driven breast cancer. FUNDING. NCI
Megan L. Kruse, Mona Patel, Jeffrey McManus, Yoon-Mi Chung, Xiuxiu Li, Wei Wei, Peter S. Bazeley, Fumihiko Nakamura, Aimalie Hardaway, Erinn Downs, Sarat Chandarlapaty, Mathew Thomas, Halle C.F. Moore, George T. Budd, W.H. Wilson Tang, Stanley L. Hazen, Aaron Bernstein, Serena Nik-Zainal, Jame Abraham, Nima Sharifi
Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease associated with unremitting fibroblast activation including fibroblast-to-myofibroblast transformation (FMT), migration, resistance to apoptotic clearance, and excessive deposition of extracellular matrix (ECM) proteins in the distal lung parenchyma. Aberrant activation of lung-developmental pathways is associated with severe fibrotic lung disease; however, the mechanisms through which these pathways activate fibroblasts in IPF remain unclear. Sox9 is a member of the HMG box family of DNA-binding transcription factors that are selectively expressed by epithelial cell progenitors to modulate branching morphogenesis during lung development. We demonstrate that Sox9 is upregulated via MAPK/PI3K-dependent signaling and by the transcription factor Wilms’ tumor 1 in distal lung-resident fibroblasts in IPF. Mechanistically, using fibroblast activation assays, we demonstrate that Sox9 functions as a positive regulator of FMT, migration, survival, and ECM production. Importantly, our in vivo studies demonstrate that fibroblast-specific deletion of Sox9 is sufficient to attenuate collagen deposition and improve lung function during TGFα-induced pulmonary fibrosis. Using a mouse model of bleomycin-induced pulmonary fibrosis, we show that myofibroblast-specific Sox9 overexpression augments fibroblast activation and pulmonary fibrosis. Thus, Sox9 functions as a profibrotic transcription factor in activating fibroblasts, illustrating the potential utility of targeting Sox9 in IPF treatment.
Prathibha R. Gajjala, Rajesh K. Kasam, Divyalakshmi Soundararajan, Debora Sinner, Steven K. Huang, Anil G. Jegga, Satish K. Madala
No posts were found with this tag.